Journal Article FZJ-2020-01384

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
What is a deep defect? Combining Shockley-Read-Hall statistics with multiphonon recombination theory

 ;  ;  ;

2020
APS College Park, MD

Physical review materials 4(2), 024602 () [10.1103/PhysRevMaterials.4.024602]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Slow nonradiative recombination is a key factor in achieving high open-circuit voltages or high luminescence yields in any optoelectronic material. Whether a defect is contributing substantially to nonradiative recombination is often estimated by defect statistics based on the model by Shockley, Read, and Hall. However, defect statistics are agnostic to the origin of the capture coefficients and therefore conclude that essentially every defect between the two quasi-Fermi levels is equally likely to be a recombination-active defect. Here, we combine Shockley-Read-Hall statistics with microscopic models for defect-assisted recombination to study how the microscopic properties of a material affect how recombination active a defect is depending on its energy level. We then use material parameters representative of typical photovoltaic absorber materials (CH3NH3PbI3, Si, and GaAs) to illustrate the relevance, but also the limitations of our model.

Classification:

Contributing Institute(s):
  1. Photovoltaik (IEK-5)
Research Program(s):
  1. 121 - Solar cells of the next generation (POF3-121) (POF3-121)

Appears in the scientific report 2020
Database coverage:
American Physical Society Transfer of Copyright Agreement ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; IF < 5 ; JCR ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IMD > IMD-3
Workflow collections > Public records
IEK > IEK-5
Publications database
Open Access

 Record created 2020-03-04, last modified 2024-07-12