Journal Article FZJ-2020-01489

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Responses of soil water storage and crop water use efficiency to changing climatic conditions: a lysimeter-based space-for-time approach

 ;  ;  ;  ;  ;  ;  ;  ;  ;

2020
EGU Katlenburg-Lindau

Hydrology and earth system sciences 24(3), 1211 - 1225 () [10.5194/hess-24-1211-2020]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Future crop production will be affected by climatic changes. In several regions, the projected changes in total rainfall and seasonal rainfall patterns will lead to lower soil water storage (SWS), which in turn affects crop water uptake, crop yield, water use efficiency (WUE), grain quality and groundwater recharge. Effects of climate change on those variables depend on the soil properties and were often estimated based on model simulations. The objective of thisstudy was to investigate the response of key variables in four different soils and for two different climates in Germany with a different aridity index (AI): 1.09 for the wetter (range: 0.82 to 1.29) and 1.57 for the drier (range: 1.19 to 1.77) climate. This is done by using high-precision weighable lysimeters. According to a “space-for-time” (SFT) concept, intact soil monoliths that were moved to sites with contrasting climatic conditions have been monitored from April 2011 until December 2017.Evapotranspiration (ET) was lower for the same soil under the relatively drier climate, whereas crop yield was significantly higher, without affecting grain quality. Especially “non-productive” water losses (evapotranspiration out of themain growing period) were lower, which led to a more efficient crop water use in the drier climate. A characteristic decrease of the SWS for soils with a finer texture was observed after a longer drought period under a drier climate. The reduced SWS after the drought remained until the end of the observation period which demonstrates carry-over of drought from one growing season to another and the over all long-term effects of single drought events. In the relatively drier climate, water flow at the soil profile bottom showed a small net upward flux over the entire monitoring period as compared to downward fluxes (groundwater recharge) or drainage in the relatively wetter climate and larger recharge rates in the coarser- as compared to finer-textured soils. The large variability of recharge from year to year and the long-lasting effects of drought periods on the SWS imply that long-term monitoring of soil water balance components is necessary to obtain representative estimates. Results confirmed a more efficient crop water use under less-plant-available soil moisture conditions. Long-term effects of changing climatic conditions on the SWS and ecosystem productivity should be considered when trying to develop adaptation strategies in the agricultural sector.

Classification:

Contributing Institute(s):
  1. Agrosphäre (IBG-3)
Research Program(s):
  1. 255 - Terrestrial Systems: From Observation to Prediction (POF3-255) (POF3-255)

Appears in the scientific report 2020
Database coverage:
Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-3
Workflow collections > Public records
Publications database
Open Access

 Record created 2020-03-13, last modified 2021-01-30