Journal Article FZJ-2020-02585

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Polaron transport mechanism in maricite NaFePO4: A combined experimental and simulation study

 ;  ;

2020
Elsevier New York, NY [u.a.]

Journal of power sources 469, 228348 - () [10.1016/j.jpowsour.2020.228348]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: We report, for the first time, systematic investigations on electronic properties of maricite NaFePO4 with different crystallite sizes by a combined experimental and theoretical approach. Ac impedance spectroscopy has been used to study the polaron transport behaviour in maricite NaFePO4 structure with different crystallite sizes over a wide range of temperatures. With the decrease in crystallite size, we observe a polaronic conductivity enhancement of approximately an order of magnitude at the nanoscale level as compared with its bulk counterpart. The temperature dependent dc conductivity has been analysed within the framework of the Mott model of polaron hopping and various physical parameters relevant for the polaron hopping process were extracted. Additionally, by introducing an approximated Mott model with calculated hole polaron migration barrier from density functional theory, we evaluated the polaronic conductivity as function of crystallite size in fair agreement with experimental data. The enhanced polaronic conductivity with crystallite size reduction is found to be due to the combined effect of increased polaron concentration, reduced hopping length, and lowered migration barrier.

Classification:

Contributing Institute(s):
  1. Werkstoffsynthese und Herstellungsverfahren (IEK-1)
Research Program(s):
  1. 131 - Electrochemical Storage (POF3-131) (POF3-131)

Appears in the scientific report 2020
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; Embargoed OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; Essential Science Indicators ; IF >= 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IMD > IMD-2
Workflow collections > Public records
IEK > IEK-1
Publications database
Open Access

 Record created 2020-07-19, last modified 2024-07-08


Published on 2020-06-12. Available in OpenAccess from 2022-06-12.:
Download fulltext PDF Download fulltext PDF (PDFA)
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)