Journal Article FZJ-2020-02780

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Modelling Actual Evapotranspiration Seasonal Variability by Meteorological Data-Based Models

 ;  ;

2020
MDPI Basel

Hydrology 7(3), 50 - () [10.3390/hydrology7030050]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: This study aims at illustrating a methodology for predicting monthly scale actual evapotranspiration losses only based on meteorological data, which mimics the evapotranspiration intra-annual dynamic. For this purpose, micrometeorological data at the Rollesbroich and Bondone mountain sites, which are energy-limited systems, and the Sister site, a water-limited system, have been analyzed. Based on an observed intra-annual transition between dry and wet states governed by a threshold value of net radiation at each site, an approach that couples meteorological data-based potential evapotranspiration and actual evapotranspiration relationships has been proposed and validated against eddy covariance measurements, and further compared to two well-known actual evapotranspiration prediction models, namely the advection-aridity and the antecedent precipitation index models. The threshold approach improves the intra-annual actual evapotranspiration variability prediction, particularly during the wet state periods, and especially concerning the Sister site, where errors are almost four times smaller compared to the basic models. To further improve the prediction within the dry state periods, a calibration of the Priestley-Taylor advection coefficient was necessary. This led to an error reduction of about 80% in the case of the Sister site, of about 30% in the case of Rollesbroich, and close to 60% in the case of Bondone Mountain. For cases with a lack of measured data of net radiation and soil heat fluxes, which are essential for the implementation of the models, an application derived from empirical relationships is discussed. In addition, the study assessed whether this variation from meteorological data worsened the prediction performances of the models.

Classification:

Contributing Institute(s):
  1. Agrosphäre (IBG-3)
Research Program(s):
  1. 255 - Terrestrial Systems: From Observation to Prediction (POF3-255) (POF3-255)

Appears in the scientific report 2020
Database coverage:
Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; Clarivate Analytics Master Journal List ; DOAJ Seal ; Emerging Sources Citation Index ; Fees ; SCOPUS ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-3
Workflow collections > Public records
Publications database
Open Access

 Record created 2020-08-06, last modified 2021-01-30