Journal Article FZJ-2020-02791

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Requirement-driven model-based development methodology applied to the design of a real-time MEG data processing unit

 ;  ;  ;  ;

2020
Springer New York, NY

Software and systems modeling 19, 1567–1587 () [10.1007/s10270-020-00797-3]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: The paper describes a multidisciplinary work that uses a model-based systems engineering method for developing real-time magnetoencephalography (MEG) signal processing. We introduce a requirement-driven, model-based development methodology (RDD and MBD) to provide a high-level environment and efficiently handle the complexity of computation and control systems. The proposed development methodology focuses on the use of System Modeling Language to define high-level model-based design descriptions for later implementation in heterogeneous hardware/software systems. The proposed approach was applied to the implementation of a real-time artifact rejection unit in MEG signal processing and demonstrated high efficiency in designing complex high-performance embedded systems. In MEG signal processing, biological artifacts in particular have a signal strength that overtop the signal of interest by orders of magnitude and must be removed from the measurement to achieve high-quality source reconstructions with minimal error contributions. However, many existing brain–computer interface studies overlook real-time artifact removal because of the demanding computational process. In this work, an automated real-time artifact rejection method is introduced, which is based on the recently presented method “ocular and cardiac artifact rejection for real-time analysis in MEG” (OCARTA). The method has been implemented using the RDD and MBD approach and successfully verified on a Virtex-6 field-programmable gate array.

Classification:

Contributing Institute(s):
  1. Physik der Medizinischen Bildgebung (INM-4)
  2. Zentralinstitut für Elektronik (ZEA-2)
  3. Jara-Institut Quantum Information (INM-11)
  4. Jülich-Aachen Research Alliance - Translational Brain Medicine (JARA-BRAIN)
Research Program(s):
  1. 573 - Neuroimaging (POF3-573) (POF3-573)

Appears in the scientific report 2020
Database coverage:
Medline ; Embargoed OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; DEAL Springer ; Ebsco Academic Search ; Essential Science Indicators ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > INM > INM-11
Institutssammlungen > ZEA > ZEA-2
Institutssammlungen > INM > INM-4
Institutssammlungen > PGI > PGI-4
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2020-08-07, letzte Änderung am 2025-01-29


Published on 2020-05-08. Available in OpenAccess from 2021-05-08.:
Volltext herunterladen PDF Volltext herunterladen PDF (PDFA)
(zusätzliche Dateien)
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)