000878505 001__ 878505 000878505 005__ 20240712113130.0 000878505 0247_ $$2doi$$a10.1002/cssc.202001530 000878505 0247_ $$2ISSN$$a1864-5631 000878505 0247_ $$2ISSN$$a1864-564X 000878505 0247_ $$2Handle$$a2128/26358 000878505 0247_ $$2altmetric$$aaltmetric:88647105 000878505 0247_ $$2pmid$$apmid:32692891 000878505 0247_ $$2WOS$$aWOS:000563871600001 000878505 037__ $$aFZJ-2020-02884 000878505 082__ $$a540 000878505 1001_ $$0P:(DE-HGF)0$$aStreipert, Benjamin$$b0 000878505 245__ $$aConventional Electrolyte and Inactive Electrode Materials in Lithium Ion Batteries: Determining Cumulative Impact of Oxidative Decomposition at high voltage 000878505 260__ $$aWeinheim$$bWiley-VCH$$c2020 000878505 3367_ $$2DRIVER$$aarticle 000878505 3367_ $$2DataCite$$aOutput Types/Journal article 000878505 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1607259607_14041 000878505 3367_ $$2BibTeX$$aARTICLE 000878505 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000878505 3367_ $$00$$2EndNote$$aJournal Article 000878505 520__ $$aHigh‐voltage electrodes based on, for example, LiNi0.5Mn1.504 (LNMO) active material require oxidative stability of inactive materials up to 4.95 V vs. Li|Li+. Referring to literature, they are frequently supposed to be unstable, though conclusions are still controversial and clearly depend on the used investigation method. For example, the galvanostatic method, as a common method in battery research, points to the opposite, thus to a stability of the inactive materials, which can be derived from, for example, the high decomposition plateau at 5.56 V vs. Li|Li+ and stable performance of the LNMO charge/discharge cycling. This work aims to unravel this apparent contradiction of the galvanostatic method with the literature by a thorough investigation of possible trace oxidation reactions in cumulative manner, that is, over many charge/discharge cycles. Indeed, the cumulated irreversible specific capacity amounts to ≈10 mAh g−1 during the initial 50 charge/discharge cycles, which is determined by imitating extreme LNMO high‐voltage conditions using electrodes solely consisting of inactive materials. This can explain the ambiguities in stability interpretations of the galvanostatic method and the literature, as the respective irreversible specific capacity is obviously too low for distinct detection in conventional galvanostatic approaches and can be only detected at extreme high‐voltage conditions. In this regard, the technique of chronoamperometry is shown to be an effective and proper complementary tool for electrochemical stability research in a qualitative and quantitative manner. 000878505 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0 000878505 588__ $$aDataset connected to CrossRef 000878505 7001_ $$0P:(DE-Juel1)181055$$aStolz, Lukas$$b1$$ufzj 000878505 7001_ $$0P:(DE-Juel1)169878$$aHomann, Gerrit$$b2$$ufzj 000878505 7001_ $$0P:(DE-HGF)0$$aJanßen, Pia$$b3 000878505 7001_ $$0P:(DE-Juel1)171204$$aCekic-Laskovic, Isidora$$b4$$ufzj 000878505 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b5$$ufzj 000878505 7001_ $$0P:(DE-Juel1)171865$$aKasnatscheew, Johannes$$b6$$eCorresponding author$$ufzj 000878505 773__ $$0PERI:(DE-600)2411405-4$$a10.1002/cssc.202001530$$gp. cssc.202001530$$n19$$p5301-5307$$tChemSusChem$$v13$$x1864-564X$$y2020 000878505 8564_ $$uhttps://juser.fz-juelich.de/record/878505/files/cssc.202001530-1.pdf$$yOpenAccess 000878505 8767_ $$92020-07-25$$d2020-08-19$$eHybrid-OA$$jDEAL$$lDEAL: Wiley$$pcssc.202001530 000878505 909CO $$ooai:juser.fz-juelich.de:878505$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire 000878505 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)181055$$aForschungszentrum Jülich$$b1$$kFZJ 000878505 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169878$$aForschungszentrum Jülich$$b2$$kFZJ 000878505 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171204$$aForschungszentrum Jülich$$b4$$kFZJ 000878505 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b5$$kFZJ 000878505 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171865$$aForschungszentrum Jülich$$b6$$kFZJ 000878505 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0 000878505 9141_ $$y2020 000878505 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-26 000878505 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-26 000878505 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 000878505 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEMSUSCHEM : 2018$$d2020-02-26 000878505 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCHEMSUSCHEM : 2018$$d2020-02-26 000878505 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-02-26$$wger 000878505 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-26 000878505 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-02-26 000878505 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-26 000878505 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000878505 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-02-26 000878505 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-26 000878505 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-26 000878505 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0 000878505 9801_ $$aAPC 000878505 9801_ $$aFullTexts 000878505 980__ $$ajournal 000878505 980__ $$aVDB 000878505 980__ $$aUNRESTRICTED 000878505 980__ $$aI:(DE-Juel1)IEK-12-20141217 000878505 980__ $$aAPC 000878505 981__ $$aI:(DE-Juel1)IMD-4-20141217