Journal Article FZJ-2020-02884

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Conventional Electrolyte and Inactive Electrode Materials in Lithium Ion Batteries: Determining Cumulative Impact of Oxidative Decomposition at high voltage

 ;  ;  ;  ;  ;  ;

2020
Wiley-VCH Weinheim

ChemSusChem 13(19), 5301-5307 () [10.1002/cssc.202001530]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: High‐voltage electrodes based on, for example, LiNi0.5Mn1.504 (LNMO) active material require oxidative stability of inactive materials up to 4.95 V vs. Li|Li+. Referring to literature, they are frequently supposed to be unstable, though conclusions are still controversial and clearly depend on the used investigation method. For example, the galvanostatic method, as a common method in battery research, points to the opposite, thus to a stability of the inactive materials, which can be derived from, for example, the high decomposition plateau at 5.56 V vs. Li|Li+ and stable performance of the LNMO charge/discharge cycling. This work aims to unravel this apparent contradiction of the galvanostatic method with the literature by a thorough investigation of possible trace oxidation reactions in cumulative manner, that is, over many charge/discharge cycles. Indeed, the cumulated irreversible specific capacity amounts to ≈10 mAh g−1 during the initial 50 charge/discharge cycles, which is determined by imitating extreme LNMO high‐voltage conditions using electrodes solely consisting of inactive materials. This can explain the ambiguities in stability interpretations of the galvanostatic method and the literature, as the respective irreversible specific capacity is obviously too low for distinct detection in conventional galvanostatic approaches and can be only detected at extreme high‐voltage conditions. In this regard, the technique of chronoamperometry is shown to be an effective and proper complementary tool for electrochemical stability research in a qualitative and quantitative manner.

Classification:

Contributing Institute(s):
  1. Helmholtz-Institut Münster Ionenleiter für Energiespeicher (IEK-12)
Research Program(s):
  1. 131 - Electrochemical Storage (POF3-131) (POF3-131)

Appears in the scientific report 2020
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DEAL Wiley ; Essential Science Indicators ; IF >= 5 ; JCR ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IMD > IMD-4
Workflow collections > Public records
Workflow collections > Publication Charges
IEK > IEK-12
Publications database
Open Access

 Record created 2020-08-19, last modified 2024-07-12


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)