Journal Article FZJ-2020-03080

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Understanding and Controlling Food Protein Structure and Function in Foods: Perspectives from Experiments and Computer Simulations

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2020
Annual Reviews64535 Palo Alto, Calif.

Annual review of food science and technology 11(1), 365-387 () [10.1146/annurev-food-032519-051640]

This record in other databases:      

Please use a persistent id in citations: doi:

Abstract: The structure and interactions of proteins play a critical role in determining the quality attributes of many foods, beverages, and pharmaceutical products. Incorporating a multiscale understanding of the structure–function relationships of proteins can provide greater insight into, and control of, the relevant processes at play. Combining data from experimental measurements, human sensory panels, and computer simulations through machine learning allows the construction of statistical models relating nanoscale properties of proteins to the physicochemical properties, physiological outcomes, and tastes of foods. This review highlights several examples of advanced computer simulations at molecular, mesoscale, and multiscale levels that shed light on the mechanisms at play in foods, thereby facilitating their control. It includes a practical simulation toolbox for those new to in silico modeling.

Classification:

Contributing Institute(s):
  1. Computational Biomedicine (IAS-5)
  2. Computational Biomedicine (INM-9)
Research Program(s):
  1. 899 - ohne Topic (POF3-899) (POF3-899)

Appears in the scientific report 2020
Database coverage:
Medline ; BIOSIS Previews ; BIOSIS Reviews Reports And Meetings ; IF >= 5 ; JCR ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IAS > IAS-5
Institutssammlungen > INM > INM-9
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank

 Datensatz erzeugt am 2020-09-08, letzte Änderung am 2024-06-25


Restricted:
Volltext herunterladen PDF Volltext herunterladen PDF (PDFA)
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)