Poster (After Call) FZJ-2020-04299

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Systematic textual and graphical description of connectivity

 ;  ;  ;  ;  ;  ;  ;

2020

Bernstein Conference 2020, onlineonline, online, 29 Sep 2020 - 1 Oct 20202020-09-292020-10-01

Abstract: Sustainable research on neuronal network models requires published models to be understandable, reproducible, and extendable. Left-out details about mathematical concepts and assumptions, algorithmic implementations, or parameterizations adversely affect progress. Such flaws are unfortunately frequent and one reason is a lack of readily applicable standards and tools for model description [1]. Here, we review models made available by the Computational Neuroscience community in databases like ModelDB [2] and Open Source Brain [3], and investigate the corresponding connectivity structures and their descriptions in both manuscript and code. Based on this review, we derive a set of connectivity concepts in combination with guidelines for a comprehensive, complete, and concise description of network connectivity. In particular, we propose a unified graphical notation for network diagrams to foster an intuitive understanding of network properties (compare [4]). This work also aims to guide the implementation of connection routines in simulation software like NEST [5] and neuromorphic hardware systems.References1. Nordlie E et al. (2009) Towards Reproducible Descriptions of Neuronal Network Models. PLoS Comput Biol. 5(8):e1000456, 10.1371/journal.pcbi.10004562. McDougal R A et al. (2017) Twenty years of ModelDB and beyond: building essential modeling tools for the future of neuroscience. J Comput Neurosci. 42:1-10, 10.1007/s10827-016-0623-73. Gleeson P et al. (2019) Open Source Brain: A Collaborative Resource for Visualizing, Analyzing, Simulating and Developing Standardized Models of Neurons and Circuits. Neuron. 103(3):395-411.e5, 10.1016/j.neuron.2019.05.0194. Le Novère N et al. (2009) The Systems Biology Graphical Notation. Nat Biotechnol. 27(8):735-41, 10.1038/nbt.15585. Gewaltig M-O and Diesmann M (2007). NEST (NEural Simulation Tool). Scholarpedia. 2(4):1430, 10.4249/scholarpedia.1430


Contributing Institute(s):
  1. Computational and Systems Neuroscience (INM-6)
  2. Theoretical Neuroscience (IAS-6)
  3. Jara-Institut Brain structure-function relationships (INM-10)
Research Program(s):
  1. 574 - Theory, modelling and simulation (POF3-574) (POF3-574)
  2. PhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405) (PHD-NO-GRANT-20170405)
  3. Advanced Computing Architectures (aca_20190115) (aca_20190115)
  4. HBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270) (720270)
  5. HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907) (785907)
  6. HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539) (945539)
  7. DEEP-EST - DEEP - Extreme Scale Technologies (754304) (754304)
  8. DigiBrain - DL: DigiBrain - From genes to brain function in health and disease (248828_20200305) (248828_20200305)
  9. COBRA - COmputing BRAin signals (COBRA): Biophysical computations of electrical and magnetic brain signals (250128_20200305) (250128_20200305)
  10. SPP 2041 347572269 - Integration von Multiskalen-Konnektivität und Gehirnarchitektur in einem supercomputergestützten Modell der menschlichen Großhirnrinde (347572269) (347572269)
  11. Brain-Scale Simulations (jinb33_20191101) (jinb33_20191101)
  12. GRK 2416 - GRK 2416: MultiSenses-MultiScales: Neue Ansätze zur Aufklärung neuronaler multisensorischer Integration (368482240) (368482240)

Appears in the scientific report 2020
Click to display QR Code for this record

The record appears in these collections:
Institute Collections > INM > INM-10
Document types > Presentations > Poster
Institute Collections > IAS > IAS-6
Institute Collections > INM > INM-6
Workflow collections > Public records
Publications database

 Record created 2020-11-05, last modified 2024-03-13



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)