Journal Article FZJ-2020-04345

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Microbial assimilation dynamics differs but total mineralization from added root and shoot residues is similar in agricultural Alfisols

 ;  ;  ;  ;  ;  ;  ;  ;  ;

2020
Elsevier Science Amsterdam [u.a.]

Soil biology & biochemistry 148, 107901 - () [10.1016/j.soilbio.2020.107901]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Microbial transformation of crop residue is the key process of soil organic matter (SOM) formation and mineralization, which determines soil fertility and affects global climate change. However, utilization dynamics of residue-derived carbon (residue C) by various microbial communities is still not well understood, especially under different residue quality and soil fertility conditions over a long-term scale (i.e., >1 year). In this study, a 500-day in-situ field experiment was conducted using 13C-labeled maize (Zea mays L.) root and shoot (composed of both stem and leaf) to examine the role of microbial community composition on the C processing. Specifically, the mineralization of residue C and incorporation of residue C into microbial biomass in low fertility (LF) and high fertility (HF) soils were investigated. The abundance of 13C in soil samples and microbial phospholipid fatty acids (PLFAs) were measured after 60, 90, 150 and 500 days since the residues added. The results showed that the mineralization rate of residue C was significantly higher in the LF than that in the HF soil for the first 150 days, and the shoot-derived C was more susceptible to degradation than root-derived C, but the final mineralization rates (~78%) were not significantly different among treatments on the day 500. Soil fertility significantly affected the relative composition of different microbial groups and distribution of residue C in microbial communities, but residue type did not do so. Furthermore, residue C contributed more to PLFA-C pool in the LF than HF treatments, and the proportion of root C in PLFA-C pool was higher than that of shoot C, indicating easier immobilization of root C by soil microbial anabolism. Accordingly, soil fertility and residue quality could both regulate the kinetics of the microbial immobilization of crop residue C, but overall the available residual quantity of applied (plant-derived) C to enhance or maintain soil C pool did not depend on them in a long term in the agricultural Alfisols.

Classification:

Contributing Institute(s):
  1. Agrosphäre (IBG-3)
Research Program(s):
  1. 255 - Terrestrial Systems: From Observation to Prediction (POF3-255) (POF3-255)

Appears in the scientific report 2020
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; Embargoed OpenAccess ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Agriculture, Biology and Environmental Sciences ; Ebsco Academic Search ; Essential Science Indicators ; IF >= 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection ; Zoological Record
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-3
Workflow collections > Public records
Publications database
Open Access

 Record created 2020-11-09, last modified 2021-01-30


Published on 2020-06-14. Available in OpenAccess from 2022-06-14.:
Download fulltext PDF Download fulltext PDF (PDFA)
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)