Journal Article FZJ-2020-04819

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
On the reaction rate distribution in porous electrodes

 ;  ;  ;

2020
Elsevier Science Amsterdam [u.a.]

Electrochemistry communications 121, 106865 - () [10.1016/j.elecom.2020.106865]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Reaction rate distribution across porous electrodes in Li-ion battery applications largely determines the overall battery performance. In the present work, expressions for the reaction rate distribution across porous electrodes are analytically derived and analyzed for small current and short time applications. The dependency on the effective ionic and electronic conductivities is systematically investigated and discussed. It is found that in the case of equal effective electronic and ionic conductivities, the reaction rate distribution is symmetric around the electrode mid-point. Small conductivities induce the charge-transfer reaction to preferentially occur at the interface of the current collector and separator, while high conductivities make the reaction rate distribution uniform across the electrode thickness. In the case of unequal conductivities, a decrease in the effective electronic conductivity shifts the reaction rate distribution towards the electrode/current collector interface. In contrast, a decrease in the effective ionic conductivity shifts the reaction rate distribution towards the electrode/separator interface. It is also found that the reaction rate distribution shows saturating behavior when the effective electronic or ionic conductivity grows infinitely. A further increase in the effective ionic or electronic conductivity does not lead to any further reaction rate distribution changes.

Classification:

Contributing Institute(s):
  1. Grundlagen der Elektrochemie (IEK-9)
Research Program(s):
  1. 135 - Fuel Cells (POF3-135) (POF3-135)

Appears in the scientific report 2020
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; Ebsco Academic Search ; Essential Science Indicators ; Fees ; IF < 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IET > IET-1
Workflowsammlungen > Öffentliche Einträge
IEK > IEK-9
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2020-11-30, letzte Änderung am 2024-07-12


OpenAccess:
Volltext herunterladen PDF
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)