000888346 001__ 888346 000888346 005__ 20240625095124.0 000888346 0247_ $$2doi$$a10.1016/j.chembiol.2020.08.005 000888346 0247_ $$2ISSN$$a2451-9448 000888346 0247_ $$2ISSN$$a2451-9456 000888346 0247_ $$2Handle$$a2128/26847 000888346 0247_ $$2altmetric$$aaltmetric:88870426 000888346 0247_ $$2pmid$$a32846115 000888346 0247_ $$2WOS$$aWOS:000592358500010 000888346 037__ $$aFZJ-2020-04864 000888346 082__ $$a570 000888346 1001_ $$00000-0003-0867-6171$$aGomila, Alexandre M. J.$$b0 000888346 245__ $$aPhotocontrol of Endogenous Glycine Receptors In Vivo 000888346 260__ $$aAmsterdam$$bElsevier$$c2020 000888346 3367_ $$2DRIVER$$aarticle 000888346 3367_ $$2DataCite$$aOutput Types/Journal article 000888346 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1611165598_25382 000888346 3367_ $$2BibTeX$$aARTICLE 000888346 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000888346 3367_ $$00$$2EndNote$$aJournal Article 000888346 520__ $$aGlycine receptors (GlyRs) are indispensable for maintaining excitatory/inhibitory balance in neuronal circuits that control reflexes and rhythmic motor behaviors. Here we have developed Glyght, a GlyR ligand controlled with light. It is selective over other Cys-loop receptors, is active in vivo, and displays an allosteric mechanism of action. The photomanipulation of glycinergic neurotransmission opens new avenues to understanding inhibitory circuits in intact animals and to developing drug-based phototherapies. 000888346 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x0 000888346 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x1 000888346 588__ $$aDataset connected to CrossRef 000888346 7001_ $$0P:(DE-HGF)0$$aRustler, Karin$$b1 000888346 7001_ $$0P:(DE-HGF)0$$aMaleeva, Galyna$$b2 000888346 7001_ $$0P:(DE-HGF)0$$aNin-Hill, Alba$$b3 000888346 7001_ $$0P:(DE-HGF)0$$aWutz, Daniel$$b4 000888346 7001_ $$0P:(DE-HGF)0$$aBautista-Barrufet, Antoni$$b5 000888346 7001_ $$00000-0002-9764-9927$$aRovira, Xavier$$b6 000888346 7001_ $$00000-0002-7103-2574$$aBosch, Miquel$$b7 000888346 7001_ $$0P:(DE-HGF)0$$aMukhametova, Elvira$$b8 000888346 7001_ $$0P:(DE-HGF)0$$aPetukhova, Elena$$b9 000888346 7001_ $$0P:(DE-HGF)0$$aPonomareva, Daria$$b10 000888346 7001_ $$0P:(DE-HGF)0$$aMukhamedyarov, Marat$$b11 000888346 7001_ $$0P:(DE-HGF)0$$aPeiretti, Franck$$b12 000888346 7001_ $$0P:(DE-Juel1)169976$$aAlfonso-Prieto, Mercedes$$b13 000888346 7001_ $$0P:(DE-HGF)0$$aRovira, Carme$$b14$$eCorresponding author 000888346 7001_ $$0P:(DE-HGF)0$$aKönig, Burkhard$$b15$$eCorresponding author 000888346 7001_ $$0P:(DE-HGF)0$$aBregestovski, Piotr$$b16$$eCorresponding author 000888346 7001_ $$0P:(DE-HGF)0$$aGorostiza, Pau$$b17$$eCorresponding author 000888346 773__ $$0PERI:(DE-600)2850144-5$$a10.1016/j.chembiol.2020.08.005$$gVol. 27, no. 11, p. 1425 - 1433.e7$$n11$$p1425 - 1433.e7$$tCell chemical biology$$v27$$x2451-9456$$y2020 000888346 8564_ $$uhttps://juser.fz-juelich.de/record/888346/files/744391v1.full.pdf$$yOpenAccess 000888346 909CO $$ooai:juser.fz-juelich.de:888346$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000888346 9101_ $$0I:(DE-HGF)0$$60000-0003-0867-6171$$aExternal Institute$$b0$$kExtern 000888346 9101_ $$0I:(DE-HGF)0$$60000-0002-9764-9927$$aExternal Institute$$b6$$kExtern 000888346 9101_ $$0I:(DE-HGF)0$$60000-0002-7103-2574$$aExternal Institute$$b7$$kExtern 000888346 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169976$$aForschungszentrum Jülich$$b13$$kFZJ 000888346 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b14$$kExtern 000888346 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b15$$kExtern 000888346 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b16$$kExtern 000888346 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b17$$kExtern 000888346 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0 000888346 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x1 000888346 9141_ $$y2020 000888346 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-12 000888346 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-12 000888346 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-09-12 000888346 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-09-12 000888346 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-12 000888346 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 000888346 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCELL CHEM BIOL : 2018$$d2020-09-12 000888346 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-09-12 000888346 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-12 000888346 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-12 000888346 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000888346 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-12 000888346 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCELL CHEM BIOL : 2018$$d2020-09-12 000888346 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-12 000888346 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-12 000888346 920__ $$lyes 000888346 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x0 000888346 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x1 000888346 980__ $$ajournal 000888346 980__ $$aVDB 000888346 980__ $$aUNRESTRICTED 000888346 980__ $$aI:(DE-Juel1)IAS-5-20120330 000888346 980__ $$aI:(DE-Juel1)INM-9-20140121 000888346 9801_ $$aFullTexts