000888346 001__ 888346
000888346 005__ 20240625095124.0
000888346 0247_ $$2doi$$a10.1016/j.chembiol.2020.08.005
000888346 0247_ $$2ISSN$$a2451-9448
000888346 0247_ $$2ISSN$$a2451-9456
000888346 0247_ $$2Handle$$a2128/26847
000888346 0247_ $$2altmetric$$aaltmetric:88870426
000888346 0247_ $$2pmid$$a32846115
000888346 0247_ $$2WOS$$aWOS:000592358500010
000888346 037__ $$aFZJ-2020-04864
000888346 082__ $$a570
000888346 1001_ $$00000-0003-0867-6171$$aGomila, Alexandre M. J.$$b0
000888346 245__ $$aPhotocontrol of Endogenous Glycine Receptors In Vivo
000888346 260__ $$aAmsterdam$$bElsevier$$c2020
000888346 3367_ $$2DRIVER$$aarticle
000888346 3367_ $$2DataCite$$aOutput Types/Journal article
000888346 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1611165598_25382
000888346 3367_ $$2BibTeX$$aARTICLE
000888346 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888346 3367_ $$00$$2EndNote$$aJournal Article
000888346 520__ $$aGlycine receptors (GlyRs) are indispensable for maintaining excitatory/inhibitory balance in neuronal circuits that control reflexes and rhythmic motor behaviors. Here we have developed Glyght, a GlyR ligand controlled with light. It is selective over other Cys-loop receptors, is active in vivo, and displays an allosteric mechanism of action. The photomanipulation of glycinergic neurotransmission opens new avenues to understanding inhibitory circuits in intact animals and to developing drug-based phototherapies.
000888346 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x0
000888346 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x1
000888346 588__ $$aDataset connected to CrossRef
000888346 7001_ $$0P:(DE-HGF)0$$aRustler, Karin$$b1
000888346 7001_ $$0P:(DE-HGF)0$$aMaleeva, Galyna$$b2
000888346 7001_ $$0P:(DE-HGF)0$$aNin-Hill, Alba$$b3
000888346 7001_ $$0P:(DE-HGF)0$$aWutz, Daniel$$b4
000888346 7001_ $$0P:(DE-HGF)0$$aBautista-Barrufet, Antoni$$b5
000888346 7001_ $$00000-0002-9764-9927$$aRovira, Xavier$$b6
000888346 7001_ $$00000-0002-7103-2574$$aBosch, Miquel$$b7
000888346 7001_ $$0P:(DE-HGF)0$$aMukhametova, Elvira$$b8
000888346 7001_ $$0P:(DE-HGF)0$$aPetukhova, Elena$$b9
000888346 7001_ $$0P:(DE-HGF)0$$aPonomareva, Daria$$b10
000888346 7001_ $$0P:(DE-HGF)0$$aMukhamedyarov, Marat$$b11
000888346 7001_ $$0P:(DE-HGF)0$$aPeiretti, Franck$$b12
000888346 7001_ $$0P:(DE-Juel1)169976$$aAlfonso-Prieto, Mercedes$$b13
000888346 7001_ $$0P:(DE-HGF)0$$aRovira, Carme$$b14$$eCorresponding author
000888346 7001_ $$0P:(DE-HGF)0$$aKönig, Burkhard$$b15$$eCorresponding author
000888346 7001_ $$0P:(DE-HGF)0$$aBregestovski, Piotr$$b16$$eCorresponding author
000888346 7001_ $$0P:(DE-HGF)0$$aGorostiza, Pau$$b17$$eCorresponding author
000888346 773__ $$0PERI:(DE-600)2850144-5$$a10.1016/j.chembiol.2020.08.005$$gVol. 27, no. 11, p. 1425 - 1433.e7$$n11$$p1425 - 1433.e7$$tCell chemical biology$$v27$$x2451-9456$$y2020
000888346 8564_ $$uhttps://juser.fz-juelich.de/record/888346/files/744391v1.full.pdf$$yOpenAccess
000888346 909CO $$ooai:juser.fz-juelich.de:888346$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000888346 9101_ $$0I:(DE-HGF)0$$60000-0003-0867-6171$$aExternal Institute$$b0$$kExtern
000888346 9101_ $$0I:(DE-HGF)0$$60000-0002-9764-9927$$aExternal Institute$$b6$$kExtern
000888346 9101_ $$0I:(DE-HGF)0$$60000-0002-7103-2574$$aExternal Institute$$b7$$kExtern
000888346 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169976$$aForschungszentrum Jülich$$b13$$kFZJ
000888346 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b14$$kExtern
000888346 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b15$$kExtern
000888346 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b16$$kExtern
000888346 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b17$$kExtern
000888346 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000888346 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x1
000888346 9141_ $$y2020
000888346 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-12
000888346 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-12
000888346 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-09-12
000888346 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-09-12
000888346 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-12
000888346 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000888346 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCELL CHEM BIOL : 2018$$d2020-09-12
000888346 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-09-12
000888346 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-12
000888346 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-12
000888346 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888346 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-12
000888346 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCELL CHEM BIOL : 2018$$d2020-09-12
000888346 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-12
000888346 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-12
000888346 920__ $$lyes
000888346 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x0
000888346 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x1
000888346 980__ $$ajournal
000888346 980__ $$aVDB
000888346 980__ $$aUNRESTRICTED
000888346 980__ $$aI:(DE-Juel1)IAS-5-20120330
000888346 980__ $$aI:(DE-Juel1)INM-9-20140121
000888346 9801_ $$aFullTexts