Journal Article FZJ-2020-04925

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Morphology and Structure Controls of Single-atom Fe-N-C Catalysts Synthesized Using FePc Powders as the Precursor

 ;  ;  ;  ;  ;

2021
MDPI Basel

Processes 9(1), 109 - () [10.3390/pr9010109]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: Understanding the origin of the high electrocatalytic activity of Fe–N–C electrocatalysts for oxygen reduction reaction is critical but still challenging for developing efficient sustainable nonprecious metal catalysts used in fuel cells. Although there are plenty of papers concerning the morphology on the surface Fe–N–C catalysts, there is very little work discussing how temperature and pressure control the growth of nanoparticles. In our lab, a unique organic vapor deposition technology was developed to investigate the effect of the temperature and pressure on catalysts. The results indicated that synthesized catalysts exhibited three kinds of morphology—nanorods, nanofibers, and nanogranules—corresponding to different synthesis processes. The growth of the crystal is the root cause of the difference in the surface morphology of the catalyst, which can reasonably explain the effect of the temperature and pressure. The oxygen reduction reaction current densities of the different catalysts at potential 0.88 V increased in the following order: FePc (1.04 mA/cm2) < Pt/C catalyst (1.54 mA/cm2) ≈ Fe–N–C-f catalyst (1.64 mA/cm2) < Fe–N–C-g catalyst (2.12 mA/cm2) < Fe–N–C-r catalyst (2.35 mA/cm2). By changing the morphology of the catalyst surface, this study proved that the higher performance of the catalysts can be obtained

Classification:

Contributing Institute(s):
  1. Grundlagen der Elektrochemie (IEK-9)
Research Program(s):
  1. 1223 - Batteries in Application (POF4-122) (POF4-122)

Appears in the scientific report 2021
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; DOAJ Seal ; Essential Science Indicators ; Fees ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IET > IET-1
Workflowsammlungen > Öffentliche Einträge
IEK > IEK-9
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2020-12-04, letzte Änderung am 2024-07-12


OpenAccess:
Volltext herunterladen PDF
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)