Journal Article FZJ-2020-04935

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
FRET Dyes Significantly Affect SAXS Intensities of Proteins

 ;  ;

2020
Wiley-VCH Weinheim

Israel journal of chemistry 60(7), 725 - 734 () [10.1002/ijch.202000007]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: Structural analyses in biophysics aim at revealing a relationship between a molecule's dynamic structure and its physiological function. Förster resonance energy transfer (FRET) and small‐angle X‐ray scattering (SAXS) are complementary experimental approaches to this. Their concomitant application in combined studies has recently opened a lively debate on how to interpret FRET measurements in the light of SAXS data with the popular example of the radius of gyration, commonly derived from both FRET and SAXS. There still is a lack of understanding in how to mutually relate and interpret quantities equally obtained from FRET or SAXS, and to what extent FRET dyes affect SAXS intensities in combined applications. In the present work, we examine the interplay of FRET and SAXS from a computational simulation perspective. Molecular simulations are a valuable complement to experimental approaches and supply instructive information on dynamics. As FRET depends not only on the mutual separation but also on the relative orientations, the dynamics, and therefore also the shapes of the dyes, we utilize a novel method for simulating FRET‐dye‐labeled proteins to investigate these aspects in atomic detail. We perform structure‐based simulations of four different proteins with and without dyes in both folded and unfolded conformations. In‐silico derived radii of gyration are different with and without dyes and depend on the chosen dye pair. The dyes apparently influence the dynamics of unfolded systems. We find that FRET dyes attached to a protein have a significant impact on theoretical SAXS intensities calculated from simulated structures, especially for small proteins. Radii of gyration from FRET and SAXS deviate systematically, which points to further underlying mechanisms beyond prevalent explanation approaches.

Classification:

Contributing Institute(s):
  1. Jülich Supercomputing Center (JSC)
  2. John von Neumann - Institut für Computing (NIC)
Research Program(s):
  1. 511 - Computational Science and Mathematical Methods (POF3-511) (POF3-511)
  2. Forschergruppe Schug (hkf6_20200501) (hkf6_20200501)

Appears in the scientific report 2020
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DEAL Wiley ; Ebsco Academic Search ; Essential Science Indicators ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Workflow collections > Public records
Institute Collections > JSC
Publications database
Open Access
NIC

 Record created 2020-12-04, last modified 2021-01-30


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)