000888641 001__ 888641
000888641 005__ 20210130011047.0
000888641 0247_ $$2doi$$a10.1002/hbm.25101
000888641 0247_ $$2ISSN$$a1065-9471
000888641 0247_ $$2ISSN$$a1097-0193
000888641 0247_ $$2Handle$$a2128/26448
000888641 0247_ $$2altmetric$$aaltmetric:84814091
000888641 0247_ $$2pmid$$apmid:32588936
000888641 0247_ $$2WOS$$aWOS:000543223500001
000888641 037__ $$aFZJ-2020-05084
000888641 041__ $$aEnglish
000888641 082__ $$a610
000888641 1001_ $$00000-0001-6463-0034$$aWeiss Lucas, Carolin$$b0$$eCorresponding author
000888641 245__ $$aInvasive versus non‐invasive mapping of the motor cortex
000888641 260__ $$aNew York, NY$$bWiley-Liss$$c2020
000888641 3367_ $$2DRIVER$$aarticle
000888641 3367_ $$2DataCite$$aOutput Types/Journal article
000888641 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1607522205_13191
000888641 3367_ $$2BibTeX$$aARTICLE
000888641 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888641 3367_ $$00$$2EndNote$$aJournal Article
000888641 520__ $$aPrecise and comprehensive mapping of somatotopic representations in the motor cortex is clinically essential to achieve maximum resection of brain tumours whilst preserving motor function, especially since the current gold standard, that is, intraoperative direct cortical stimulation (DCS), holds limitations linked to the intraoperative setting such as time constraints or anatomical restrictions. Non‐invasive techniques are increasingly relevant with regard to pre‐operative risk‐assessment. Here, we assessed the congruency of neuronavigated transcranial magnetic stimulation (nTMS) and functional magnetic resonance imaging (fMRI) with DCS. The motor representations of the hand, the foot and the tongue regions of 36 patients with intracranial tumours were mapped pre‐operatively using nTMS and fMRI and by intraoperative DCS. Euclidean distances (ED) between hotspots/centres of gravity and (relative) overlaps of the maps were compared. We found significantly smaller EDs (11.4 ± 8.3 vs. 16.8 ± 7.0 mm) and better spatial overlaps (64 ± 38% vs. 37 ± 37%) between DCS and nTMS compared with DCS and fMRI. In contrast to DCS, fMRI and nTMS mappings were feasible for all regions and patients without complications. In summary, nTMS seems to be the more promising non‐invasive motor cortex mapping technique to approximate the gold standard DCS results.
000888641 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000888641 588__ $$aDataset connected to CrossRef
000888641 7001_ $$0P:(DE-Juel1)165785$$aNettekoven, Charlotte$$b1
000888641 7001_ $$00000-0001-7527-6990$$aNeuschmelting, Volker$$b2
000888641 7001_ $$0P:(DE-HGF)0$$aOros‐Peusquens, Ana‐Maria$$b3
000888641 7001_ $$0P:(DE-Juel1)131627$$aStoffels, Gabriele$$b4
000888641 7001_ $$0P:(DE-Juel1)162395$$aViswanathan, Shivakumar$$b5
000888641 7001_ $$0P:(DE-Juel1)165784$$aRehme, Anne K.$$b6
000888641 7001_ $$0P:(DE-HGF)0$$aFaymonville, Andrea Maria$$b7
000888641 7001_ $$0P:(DE-Juel1)131794$$aShah, N. Jon$$b8$$ufzj
000888641 7001_ $$0P:(DE-Juel1)131777$$aLangen, Karl Josef$$b9
000888641 7001_ $$0P:(DE-HGF)0$$aGoldbrunner, Roland$$b10
000888641 7001_ $$0P:(DE-Juel1)161406$$aGrefkes, Christian$$b11
000888641 773__ $$0PERI:(DE-600)1492703-2$$a10.1002/hbm.25101$$gVol. 41, no. 14, p. 3970 - 3983$$n14$$p3970 - 3983$$tHuman brain mapping$$v41$$x1097-0193$$y2020
000888641 8564_ $$uhttps://juser.fz-juelich.de/record/888641/files/Weiss_2020_HumBrainMapp_Invasive%20versus%20non-invasive%20mapping%20....pdf$$yOpenAccess
000888641 909CO $$ooai:juser.fz-juelich.de:888641$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000888641 9101_ $$0I:(DE-HGF)0$$60000-0001-6463-0034$$aExternal Institute$$b0$$kExtern
000888641 9101_ $$0I:(DE-HGF)0$$60000-0001-7527-6990$$aExternal Institute$$b2$$kExtern
000888641 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131627$$aForschungszentrum Jülich$$b4$$kFZJ
000888641 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162395$$aForschungszentrum Jülich$$b5$$kFZJ
000888641 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b8$$kFZJ
000888641 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich$$b9$$kFZJ
000888641 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161406$$aForschungszentrum Jülich$$b11$$kFZJ
000888641 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000888641 9141_ $$y2020
000888641 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-27
000888641 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-27
000888641 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-08-27
000888641 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-08-27
000888641 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-27
000888641 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000888641 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bHUM BRAIN MAPP : 2018$$d2020-08-27
000888641 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-08-27$$wger
000888641 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-08-27
000888641 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-27
000888641 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-27
000888641 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-27
000888641 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888641 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-27
000888641 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-27
000888641 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-08-27
000888641 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-08-27$$wger
000888641 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-27
000888641 920__ $$lyes
000888641 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000888641 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x1
000888641 980__ $$ajournal
000888641 980__ $$aVDB
000888641 980__ $$aUNRESTRICTED
000888641 980__ $$aI:(DE-Juel1)INM-3-20090406
000888641 980__ $$aI:(DE-Juel1)INM-4-20090406
000888641 9801_ $$aFullTexts