Journal Article FZJ-2020-05093

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Electromagnetically induced transparency in a mono-isotopic 167 Er: 7 LiYF 4 crystal below 1 Kelvin: microwave photonics approach

 ;  ;  ;  ;  ;

2020
Soc. Washington, DC

Optics express 28(20), 29166 - () [10.1364/OE.400222]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Electromagnetically induced transparency allows for the controllable change of absorption properties, which can be exploited in a number of applications including optical quantum memory. In this paper, we present a study of the electromagnetically induced transparency in a 167Er:7LiYF4 crystal at low magnetic fields and ultra-low temperatures. The experimental measurement scheme employs an optical vector network analysis that provides high precision measurement of amplitude, phase and group delay and paves the way towards full on-chip integration of optical quantum memory setups. We found that sub-Kelvin temperatures are the necessary requirement for observing electromagnetically induced transparency in this crystal at low fields. A good agreement between theory and experiment is achieved by taking into account the phonon bottleneck effect.

Classification:

Contributing Institute(s):
  1. JARA Institut Quanteninformation (PGI-11)
Research Program(s):
  1. 144 - Controlling Collective States (POF3-144) (POF3-144)

Appears in the scientific report 2020
Database coverage:
Medline ; DOAJ ; OpenAccess ; Article Processing Charges ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; Essential Science Indicators ; Fees ; IF < 5 ; JCR ; PubMed Central ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > PGI > PGI-11
Workflow collections > Public records
Publications database
Open Access

 Record created 2020-12-09, last modified 2021-01-30


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)