Journal Article FZJ-2020-05297

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Harnessing Orbital-to-Spin Conversion of Interfacial Orbital Currents for Efficient Spin-Orbit Torques

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2020
APS College Park, Md.

Physical review letters 125(17), 177201 () [10.1103/PhysRevLett.125.177201]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Current-induced spin-orbit torques (SOTs) allow for the efficient electrical manipulation of magnetism in spintronic devices. Engineering the SOT efficiency is a key goal that is pursued by maximizing the active interfacial spin accumulation or modulating the nonequilibrium spin density that builds up through the spin Hall and inverse spin galvanic effects. Regardless of the origin, the fundamental requirement for the generation of the current-induced torques is a net spin accumulation. We report on the large enhancement of the SOT efficiency in thulium iron garnet (TmIG)/Pt by capping with a CuOx layer. Considering the weak spin-orbit coupling (SOC) of CuOx, these surprising findings likely result from an orbital current generated at the interface between CuOx and Pt, which is injected into the Pt layer and converted into a spin current by strong SOC. The converted spin current decays across the Pt layer and exerts a “nonlocal” torque on TmIG. This additional torque leads to a maximum colossal enhancement of the SOT efficiency of a factor 16 for 1.5 nm of Pt at room temperature, thus opening a path to increase torques while at the same time offering insights into the underlying physics of orbital transport, which has so far been elusive.

Classification:

Contributing Institute(s):
  1. Quanten-Theorie der Materialien (IAS-1)
  2. Quanten-Theorie der Materialien (PGI-1)
  3. JARA-FIT (JARA-FIT)
  4. JARA - HPC (JARA-HPC)
Research Program(s):
  1. 142 - Controlling Spin-Based Phenomena (POF3-142) (POF3-142)

Appears in the scientific report 2020
Database coverage:
Medline ; American Physical Society Transfer of Copyright Agreement ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Electronics and Telecommunications Collection ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; Essential Science Indicators ; IF >= 5 ; JCR ; NationallizenzNationallizenz ; SCOAP3 sponsored Journal ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
JARA > JARA > JARA-JARA\-FIT
JARA > JARA > JARA-JARA\-HPC
Institute Collections > IAS > IAS-1
Institute Collections > PGI > PGI-1
Workflow collections > Public records
Publications database
Open Access

 Record created 2020-12-16, last modified 2021-01-30


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)