Journal Article FZJ-2021-00328

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
How well do crop modeling groups predict wheat phenology, given calibration data from the target population?

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2021
Elsevier Science Amsterdam [u.a.]

European journal of agronomy 124, 126195 - () [10.1016/j.eja.2020.126195]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Predicting phenology is essential for adapting varieties to different environmental conditions and for crop management. Therefore, it is important to evaluate how well different crop modeling groups can predict phenology. Multiple evaluation studies have been previously published, but it is still difficult to generalize the findings from such studies since they often test some specific aspect of extrapolation to new conditions, or do not test on data that is truly independent of the data used for calibration. In this study, we analyzed the prediction of wheat phenology in Northern France under observed weather and current management, which is a problem of practical importance for wheat management. The results of 27 modeling groups are evaluated, where modeling group encompasses model structure, i.e. the model equations, the calibration method and the values of those parameters not affected by calibration. The data for calibration and evaluation are sampled from the same target population, thus extrapolation is limited. The calibration and evaluation data have neither year nor site in common, to guarantee rigorous evaluation of prediction for new weather and sites. The best modeling groups, and also the mean and median of the simulations, have a mean absolute error (MAE) of about 3 days, which is comparable to the measurement error. Almost all models do better than using average number of days or average sum of degree days to predict phenology. On the other hand, there are important differences between modeling groups, due to model structural differences and to differences between groups using the same model structure, which emphasizes that model structure alone does not completely determine prediction accuracy. In addition to providing information for our specific environments and varieties, these results are a useful contribution to a knowledge base of how well modeling groups can predict phenology, when provided with calibration data from the target population.

Classification:

Contributing Institute(s):
  1. Agrosphäre (IBG-3)
Research Program(s):
  1. 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217) (POF4-217)

Appears in the scientific report 2021
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; Embargoed OpenAccess ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Agriculture, Biology and Environmental Sciences ; Ebsco Academic Search ; Essential Science Indicators ; IF < 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-3
Workflow collections > Public records
Publications database
Open Access

 Record created 2021-01-18, last modified 2021-10-25


Published on 2021-01-14. Available in OpenAccess from 2022-07-14.:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)