001     890011
005     20240711092252.0
024 7 _ |a 10.1111/jace.17583
|2 doi
024 7 _ |a 0002-7820
|2 ISSN
024 7 _ |a 1551-2916
|2 ISSN
024 7 _ |a 2128/27181
|2 Handle
024 7 _ |a WOS:000595824300001
|2 WOS
037 _ _ |a FZJ-2021-00605
082 _ _ |a 660
100 1 _ |a Zeng, Fanlin
|0 P:(DE-Juel1)173865
|b 0
|e Corresponding author
245 _ _ |a Mechanical reliability of Ce 0.8 Gd 0.2 O 2− δ ‐FeCo 2 O 4 dual phase membranes synthesized by one‐step solid‐state reaction
260 _ _ |a Westerville, Ohio
|c 2020
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1613482185_14262
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Ce0.8Gd0.2O2−δ‐FeCo2O4 composites are attractive candidate materials for high‐purity oxygen generation providing robust chemical stability. Aiming for future industrial applications, a feasible solid‐state reaction process with one thermal processing step was used to synthesize 50 wt% Ce0.8Gd0.2O2−δ:50 wt% FeCo2O4 and 85 wt% Ce0.8Gd0.2O2−δ:15 wt% FeCo2O4 composites. Mechanical reliabilities of the sintered membranes were assessed based on the characterized mechanical properties and subcritical crack growth behavior. In general, the fracture strengths of as‐sintered membranes were reduced by tensile residual stresses and microcracks. In particular, the enhanced subcritical crack growth behavior, which leads to limited stress tolerance and high failure probability after a 10‐year operation, was evaluated in more detail. Further materials and processing improvements are needed to eliminate the tensile stress and microcracks to warrant a long‐term reliable operation of the composites.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Malzbender, Jürgen
|0 P:(DE-Juel1)129755
|b 1
|u fzj
700 1 _ |a Baumann, Stefan
|0 P:(DE-Juel1)129587
|b 2
|u fzj
700 1 _ |a Zhou, Wenyu
|0 P:(DE-Juel1)176867
|b 3
|u fzj
700 1 _ |a Ziegner, Mirko
|0 P:(DE-Juel1)129815
|b 4
|u fzj
700 1 _ |a Nijmeijer, Arian
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 6
|u fzj
700 1 _ |a Schwaiger, Ruth
|0 P:(DE-Juel1)179598
|b 7
|u fzj
700 1 _ |a Meulenberg, Wilhelm Albert
|0 P:(DE-Juel1)129637
|b 8
|u fzj
773 _ _ |a 10.1111/jace.17583
|g p. jace.17583
|0 PERI:(DE-600)2008170-4
|n 4
|p 1814-1830
|t Journal of the American Ceramic Society
|v 104
|y 2020
|x 1551-2916
856 4 _ |u https://juser.fz-juelich.de/record/890011/files/jace.17583.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:890011
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)173865
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129755
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129587
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)176867
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129815
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)161591
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)179598
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)129637
913 0 _ |a DE-HGF
|b Energie
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Methods and Concepts for Material Development
|x 0
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-08-29
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-08-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J AM CERAM SOC : 2018
|d 2020-08-29
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-08-29
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-29
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-08-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-29
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-08-29
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-29
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 1
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l JARA-ENERGY
|x 2
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a I:(DE-82)080011_20140620
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21