Journal Article FZJ-2021-00605

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Mechanical reliability of Ce 0.8 Gd 0.2 O 2− δ ‐FeCo 2 O 4 dual phase membranes synthesized by one‐step solid‐state reaction

 ;  ;  ;  ;  ;  ;  ;  ;

2020
Soc. Westerville, Ohio

Journal of the American Ceramic Society 104(4), 1814-1830 () [10.1111/jace.17583]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: Ce0.8Gd0.2O2−δ‐FeCo2O4 composites are attractive candidate materials for high‐purity oxygen generation providing robust chemical stability. Aiming for future industrial applications, a feasible solid‐state reaction process with one thermal processing step was used to synthesize 50 wt% Ce0.8Gd0.2O2−δ:50 wt% FeCo2O4 and 85 wt% Ce0.8Gd0.2O2−δ:15 wt% FeCo2O4 composites. Mechanical reliabilities of the sintered membranes were assessed based on the characterized mechanical properties and subcritical crack growth behavior. In general, the fracture strengths of as‐sintered membranes were reduced by tensile residual stresses and microcracks. In particular, the enhanced subcritical crack growth behavior, which leads to limited stress tolerance and high failure probability after a 10‐year operation, was evaluated in more detail. Further materials and processing improvements are needed to eliminate the tensile stress and microcracks to warrant a long‐term reliable operation of the composites.

Classification:

Contributing Institute(s):
  1. Werkstoffsynthese und Herstellungsverfahren (IEK-1)
  2. Werkstoffstruktur und -eigenschaften (IEK-2)
  3. JARA-ENERGY (JARA-ENERGY)
Research Program(s):
  1. 113 - Methods and Concepts for Material Development (POF3-113) (POF3-113)

Appears in the scientific report 2021
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; DEAL Wiley ; Ebsco Academic Search ; Essential Science Indicators ; IF < 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
JARA > JARA > JARA-JARA\-ENERGY
Institute Collections > IMD > IMD-2
Institute Collections > IMD > IMD-1
Workflow collections > Public records
Workflow collections > Publication Charges
IEK > IEK-2
IEK > IEK-1
Publications database
Open Access

 Record created 2021-01-22, last modified 2024-07-11


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)