Contribution to a conference proceedings FZJ-2021-01283

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Approaching Remote Sensing Image Classification with Ensembles of Support Vector Machines on the D-Wave Quantum Annealer

 ;  ;  ;  ;

2020
IEEE

2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020, Online eventOnline event, Hawaii, 26 Sep 2020 - 2 Oct 20202020-09-262020-10-02 IEEE 1973 - 1976 () [10.1109/IGARSS39084.2020.9323544]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: Support Vector Machine (SVM) is a popular supervised MachineLearning (ML) method that is widely used for classificationand regression problems. Recently, a method to trainSVMs on a D-Wave 2000Q Quantum Annealer (QA) was proposedfor binary classification of some biological data. First,ensembles of weak quantum SVMs are generated by trainingeach classifier on a disjoint training subset that can be fitinto the QA. Then, the computed weak solutions are fusedfor making predictions on unseen data. In this work, the classificationof Remote Sensing (RS) multispectral images withSVMs trained on a QA is discussed. Furthermore, an opencode repository is released to facilitate an early entry into thepractical application of QA, a new disruptive compute technology.

Classification:

Contributing Institute(s):
  1. Jülich Supercomputing Center (JSC)
Research Program(s):
  1. 512 - Data-Intensive Science and Federated Computing (POF3-512) (POF3-512)

Appears in the scientific report 2021
Database coverage:
Medline ; OpenAccess ; BIOSIS Previews ; Current Contents - Life Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection ; Zoological Record
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Ereignisse > Beiträge zu Proceedings
Workflowsammlungen > Öffentliche Einträge
Institutssammlungen > JSC
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2021-03-04, letzte Änderung am 2023-01-11


OpenAccess:
Volltext herunterladen PDF
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)