Journal Article FZJ-2021-01303

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
A cascade reaction for the synthesis of d-fagomine precursor revisited: Kinetic insight and understanding of the system

 ;  ;  ;  ;  ;

2021
Elsevier New York, NY [u.a.]

New biotechnology 63, 19 - 28 () [10.1016/j.nbt.2021.02.004]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: The synthesis of aldol adduct (3S,4R)-6-[(benzyloxycarbonyl)amino]-5,6-dideoxyhex-2-ulose, a precursor of the interesting dietary supplement, iminosugar d-fagomine, was studied in a cascade reaction with three enzymes starting from Cbz-N-3-aminopropanol. This system was studied previously using a statistical optimization method which enabled a 79 % yield of the aldol adduct with a 10 % yield of the undesired amino acid by-product. Here, a kinetic model of the cascade, including enzyme operational stability decay rate and the undesired overoxidation of the intermediate product, was developed. The validated model was instrumental in the optimization of the cascade reaction in the batch reactor. Simulations were carried out to determine the variables with the most significant impact on substrate conversion and product yield. As a result, process conditions were found that provided the aldol adduct in 92 % yield with only 0.7 % yield of the amino acid in a one-pot one-step reaction. Additionally, compared to previous work, this improved process outcome was achieved at lower concentrations of two enzymes used in the reaction. With this study the advantages are demonstrated of a modelling approach in developing complex biocatalytical processes. Mathematical models enable better understanding of the interactions of variables in the investigated system, reduce cost, experimental efforts in the lab and time necessary to obtain results since the simulations are carried out in silico.

Classification:

Contributing Institute(s):
  1. Biotechnologie (IBG-1)
Research Program(s):
  1. 2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217) (POF4-217)

Appears in the scientific report 2021
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; Embargoed OpenAccess ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Life Sciences ; Ebsco Academic Search ; Essential Science Indicators ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IBG > IBG-1
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2021-03-08, letzte Änderung am 2021-09-01


Published on 2021-02-25. Available in OpenAccess from 2022-02-25.:
Volltext herunterladen PDF
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)