Journal Article FZJ-2021-01723

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Physicochemical Approach to Understanding the Structure, Conformation, and Activity of Mannan Polysaccharides

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2021
American Chemical Soc. Columbus, Ohio

Biomacromolecules 22, 1445-1457 () [10.1021/acs.biomac.0c01659]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Extracellular polysaccharides are widely produced by bacteria, yeasts, and algae. These polymers are involved in several biological functions, such as bacteria adhesion to surface and biofilm formation, ion sequestering, protection from desiccation, and cryoprotection. The chemical characterization of these polymers is the starting point for obtaining relationships between their structures and their various functions. While this fundamental correlation is well reported and studied for the proteins, for the polysaccharides, this relationship is less intuitive. In this paper, we elucidate the chemical structure and conformational studies of a mannan exopolysaccharide from the permafrost isolated bacterium Psychrobacter arcticus strain 273-4. The mannan from the cold-adapted bacterium was compared with its dephosphorylated derivative and the commercial product from Saccharomyces cerevisiae. Starting from the chemical structure, we explored a new approach to deepen the study of the structure/activity relationship. A pool of physicochemical techniques, ranging from small-angle neutron scattering (SANS) and dynamic and static light scattering (DLS and SLS, respectively) to circular dichroism (CD) and cryo-transmission electron microscopy (cryo-TEM), have been used. Finally, the ice recrystallization inhibition activity of the polysaccharides was explored. The experimental evidence suggests that the mannan exopolysaccharide from P. arcticus bacterium has an efficient interaction with the water molecules, and it is structurally characterized by rigid-rod regions assuming a 14-helix-type conformation.

Keyword(s): Health and Life (1st) ; Biology (2nd) ; Soft Condensed Matter (2nd)

Classification:

Contributing Institute(s):
  1. JCNS-FRM-II (JCNS-FRM-II)
  2. Heinz Maier-Leibnitz Zentrum (MLZ)
  3. Neutronenstreuung (JCNS-1)
  4. JCNS-4 (JCNS-4)
Research Program(s):
  1. 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4) (POF4-6G4)
  2. 632 - Materials – Quantum, Complex and Functional Materials (POF4-632) (POF4-632)
Experiment(s):
  1. KWS-2: Small angle scattering diffractometer (NL3ao)
  2. TEM-MLZ: Transmission electron microscope at MLZ

Appears in the scientific report 2021
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; BIOSIS Previews ; Biological Abstracts ; Chemical Reactions ; Clarivate Analytics Master Journal List ; Current Contents - Life Sciences ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; Essential Science Indicators ; IF >= 5 ; Index Chemicus ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > JCNS > JCNS-FRM-II
Institutssammlungen > JCNS > JCNS-4
Institutssammlungen > JCNS > JCNS-1
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2021-04-13, letzte Änderung am 2022-02-22


OpenAccess:
Manuscript_Biomacromolecules - Volltext herunterladen PDF
acs.biomac.0c01659 - Volltext herunterladen PDF
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)