Journal Article FZJ-2021-01752

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Multistate current-induced magnetization switching in Au/Fe/MgO(001) epitaxial heterostructures

 ;  ;  ;  ;  ;  ;  ;  ;

2021
APS College Park, MD

Physical review research 3(2), 023089 () [10.1103/PhysRevResearch.3.023089]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Magnetization switching using in-plane charge current recently has been widely investigated in heavy metal/ferromagnet bilayers with the switching mechanism usually attributed to the action of the spin-orbit coupling. Here we study in-plane current induced magnetization switching in model epitaxial bilayers that consist of Au(001) and Fe(001) grown on MgO(001). We use the planar Hall effect combined with magnetooptical Kerr effect (MOKE) microscopy to investigate magnetic properties of the bilayers and current-induced switching. We show that a current density beyond 1.4×107 A/cm can be employed for reproducible electrical switching of the magnetization between multiple stable states that correspond to different arrangements of magnetic domains with magnetization direction along one of the in-plane easy magnetization axes of the Fe(001) film. Lower current densities result in stable intermediate transversal resistances which are interpreted based on MOKE-microscopy investigations as resulting from the current-induced magnetic domain structure that is formed in the area of the Hall cross. We find that the physical mechanism of the current-induced magnetization switching of the Au/Fe/MgO(001) system at room temperature can be fully explained by the Oersted field, which is generated by the charge current flowing mostly through the Au layer.

Classification:

Contributing Institute(s):
  1. Elektronische Eigenschaften (PGI-6)
Research Program(s):
  1. 522 - Quantum Computing (POF4-522) (POF4-522)

Appears in the scientific report 2021
Database coverage:
Medline ; Medline ; Creative Commons Attribution CC BY (No Version) ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; Clarivate Analytics Master Journal List ; DOAJ Seal ; Emerging Sources Citation Index ; Fees ; IF < 5 ; JCR ; SCOPUS ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > PGI > PGI-6
Workflowsammlungen > Öffentliche Einträge
Workflowsammlungen > Publikationsgebühren
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2021-04-15, letzte Änderung am 2024-05-07