Journal Article FZJ-2021-02641

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Lithium deposition in single-ion conducting polymer electrolytes

 ;  ;  ;  ;  ;  ;  ;  ;

2021
Elsevier [New York, NY]

Cell reports / Physical science 2(7), 100496 () [10.1016/j.xcrp.2021.100496]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Lithium (Li)-metal is considered as promising anode material for high-energy-density rechargeable batteries, although its application is hampered by inhomogeneous Li deposition and dendritic Li morphologies that could eventually result in contact losses of bulk and deposited Li as well as cell short circuits. Based on theoretical investigations, recent works on polymer electrolytes particularly focus on the design of single-ion conducting electrolytes and improvement of bulk Li+ transport properties, including enhanced Li+ transference numbers, ionic conductivity, and mechanical stability, thereby affording safer and potentially “dendrite-free” cycling of Li-metal batteries. In the present work, it is revealed that the spatial microstructures, localized chemistry, and corresponding distributions of properties within the electrolyte are also decisive for achieving superior cell performances. Thus, targeted modification of the electrolyte microstructures should be considered as further critical design parameters for future electrolyte development and to actually control Li deposition behavior and longevity of Li-metal batteries.

Classification:

Contributing Institute(s):
  1. Helmholtz-Institut Münster Ionenleiter für Energiespeicher (IEK-12)
Research Program(s):
  1. 122 - Elektrochemische Energiespeicherung (POF4-122) (POF4-122)

Appears in the scientific report 2021
Database coverage:
Medline ; Medline ; Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; Essential Science Indicators ; Fees ; IF >= 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IMD > IMD-4
Workflow collections > Public records
IEK > IEK-12
Publications database
Open Access

 Record created 2021-06-16, last modified 2024-07-12


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)