Journal Article FZJ-2021-03053

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Soil temperature modeling using machine learning techniques

 ;  ;  ;  ;  ;

2020
Univ., International Research Center for Living with Desert Tehran

Desert 25(2), 185-199 () [10.22059/jdesert.2020.79256]

This record in other databases:

Please use a persistent id in citations:   doi:

Abstract: Soil Temperature (ST) is critical for environmental applications. While its measurement is often difficult, estimation from environmental parameters has shown promise. The purpose of this study was to model ST in cold season from soil properties and environmental parameters. This study was conducted as a pot experiment in Ardebil, Iran. Automatic thermal sensors were installed at 5 and 10 cm depths. Besides, soil properties and environmental parameters were determined based on field and laboratory works. Machine learning methods including Multiple Linear Regression (MLR), Artificial Neural Network (ANN), and Adaptive Neuro-Fuzzy Interface System (ANFIS) were used for modeling ST. The air temperature was observed as the most effective factor in ST modeling. The relationship between soil and air temperature was stronger at 5 cm depth compared to 10 cm. The R2 between soil and air temperature was higher in the absence of sunlight than in its presence. The prediction of ANFIS (R2= 0.96 and MAPE= 10.5) was closer to the observed ST values compared to the ANN (R2= 0.91 and MAPE= 35) and MLR (R2= 0.57 and MAPE= 41). The results revealed the advantage of ANFIS method for ST modeling. This approach can be applied for soil depths and locations with data gap.

Classification:

Contributing Institute(s):
  1. Agrosphäre (IBG-3)
Research Program(s):
  1. 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217) (POF4-217)

Appears in the scientific report 2021
Database coverage:
Creative Commons Attribution CC BY (No Version) ; DOAJ ; OpenAccess ; DOAJ Seal ; Ebsco Academic Search
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-3
Workflow collections > Public records
Publications database
Open Access

 Record created 2021-07-22, last modified 2022-01-31


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)