Journal Article FZJ-2021-03165

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
The impact of the addition of Bi2Te3 nanoparticles on the structural and the magnetic properties of the Bi-2223 high-Tc superconductor

 ;  ;  ;

2021
Elsevier Science Amsterdam [u.a.]

Ceramics international 47(18), 25236 - 25248 () [10.1016/j.ceramint.2021.05.244]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: The polycrystalline granular BSCCO high Tc superconductors (HTSC) have limitations in various applications. These limitations appear due to the flux pinning's weakness and the weak links between the grains comparatively in high temperatures and high applied magnetic fields. Bi2Te3 nanoparticles are artificially introduced into the Bi-2223 HTCS matrix to be employed as effective flux pinning centers to enhance the flux pinning capability and the critical current density. The effect of the additive of Bi2Te3 nanoparticles on the structural and physical properties of Bi-2223 were investigated for the polycrystalline (Bi1.6Pb0.4Sr2Ca2Cu3O10+δ)1-x/(Bi2Te3)x where (x = 0.00,0.01,0.02& 0.03). The phase structure/formation, volume fraction, the lattice constants were described by X-ray powder diffraction (XRD) measurements. Diamagnetic signal has been investigated with two onset temperatures (Tc1&Tc2) for the common BSCCO phases (Bi-2223 and Bi-2212) which confirm the XRD obtained data without any indication for unwanted impurities. The magnetic interactions between Bi2Te3 nanoparticles addition and the superconductor matrix are discussed at 5 and 50 K. The relation between the microstructure, BSCCO phase's contents, the hysteresis loops, the calculated critical current densities, and the flux densities were also reported for the samples. Nano-Bi2Te3 shows a great impact on the BSCCO superconducting properties and influences its flux densities and the flux pinning mechanisms as reported experimentally and theoretically. Consequently, the additive of Bi2Te3 nanoparticles must be carefully controlled to balance the microstructure and superconducting parameters of the BSCCO HTSC.

Classification:

Contributing Institute(s):
  1. Streumethoden (JCNS-2)
  2. Streumethoden (PGI-4)
  3. JARA-FIT (JARA-FIT)
Research Program(s):
  1. 632 - Materials – Quantum, Complex and Functional Materials (POF4-632) (POF4-632)
  2. 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4) (POF4-6G4)

Appears in the scientific report 2021
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; Embargoed OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; Essential Science Indicators ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > JCNS > JCNS-2
JARA > JARA > JARA-JARA\-FIT
Institute Collections > PGI > PGI-4
Workflow collections > Public records
Publications database
Open Access

 Record created 2021-08-03, last modified 2024-05-29


Published on 2021-06-01. Available in OpenAccess from 2023-06-01.:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)