Hauptseite > Publikationsdatenbank > Electronic Structure Engineering of Honeycomb Layered Cathode Material for Sodium‐Ion Batteries |
Journal Article | FZJ-2021-03252 |
; ; ; ; ; ; ;
2021
Wiley-VCH
Weinheim
This record in other databases:
Please use a persistent id in citations: http://hdl.handle.net/2128/30851 doi:10.1002/aenm.202003399
Abstract: In this work, the rational design of O′3-type Na[Ni2/3−xCoxSb1/3]O2, a solid solution of Na[Ni2/3Sb1/3]O2–Na[Co2/3Sb1/3]O2, is introduced. Because of the difficulty of the Co3+/2+ redox reaction, the electronic structures of Na[Ni2/3−xCoxSb1/3]O2 compounds are engineered to build electroconducting networks in the oxide matrix through electrochemical oxidation of Co2+ to Co3+, after which the formed Co3+ does not participate in the electrochemical reaction but improves the electrical conductivity in the structure. Density functional theory calculations reveal a reduced bandgap energy after the formation of Co3+ during desodiation of Na1−y[Ni2/3−xCoxSb1/3]O2. Using the oxidized Co3+ species while improving the electrical conductivity, the Na[Ni2/3−xCoxSb1/3]O2 (x = 1/6) electrode exhibits excellent cyclability for 1000 cycles with ≈72.5% capacity retention at 2C (400 mA g−1) and activity even at 50C (10 A g−1) in Na cells. Operando X-ray diffraction and ex situ X-ray absorption near-edge structure investigations reveal suppressed lattice variations upon charge and discharge compared with those of Na[Ni2/3Sb1/3]O2 achieved by the presence of the electrochemical-driven Co3+ in the structure. These findings offer a new strategy for the development of cathode materials for sodium-ion batteries, providing important insight into their structural transformations and the electronic nature of advanced cathode materials.
![]() |
The record appears in these collections: |