Journal Article FZJ-2021-03371

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Controlling the electronic and physical coupling on dielectric thin films

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2020
Beilstein-Institut zur Förderung der Chemischen Wissenschaften Frankfurt, M.

Beilstein journal of nanotechnology 11, 1492 - 1503 () [10.3762/bjnano.11.132]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Ultrathin dielectric/insulating films on metals are often used as decoupling layers to allow for the study of the electronic properties of adsorbed molecules without electronic interference from the underlying metal substrate. However, the presence of such decoupling layers may effectively change the electron donating properties of the substrate, for example, by lowering its work function and thus enhancing the charging of the molecular adsorbate layer through electron tunneling. Here, an experimental study of the charging of para-sexiphenyl (6P) on ultrathin MgO(100) films supported on Ag(100) is reported. By deliberately changing the work function of the MgO(100)/Ag(100) system, it is shown that the charge transfer (electronic coupling) into the 6P molecules can be controlled, and 6P monolayers with uncharged molecules (Schottky–Mott regime) and charged and uncharged molecules (Fermi level pinning regime) can be obtained. Furthermore, it was found that charge transfer and temperature strongly influence the orientation, conformation, and wetting behavior (physical coupling) of the 6P layers on the MgO(100) thin films.

Classification:

Contributing Institute(s):
  1. Quantum Nanoscience (PGI-3)
Research Program(s):
  1. 5213 - Quantum Nanoscience (POF4-521) (POF4-521)

Appears in the scientific report 2021
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; Essential Science Indicators ; IF < 5 ; JCR ; PubMed Central ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > PGI > PGI-3
Workflow collections > Public records
Publications database
Open Access

 Record created 2021-09-01, last modified 2022-01-31


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)