Journal Article FZJ-2021-03437

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
High-throughput, accurate Monte Carlo simulation on CPU hardware for PET applications

 ;  ;  ;  ;

2021
IOP Publ. Bristol

Physics in medicine and biology 66(18), 185001 - () [10.1088/1361-6560/ac1ca0]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Monte Carlo simulations (MCS) represent a fundamental approach to modelling the photon interactions in positron emission tomography (PET). A variety of PET-dedicated MCS tools are available to assist and improve PET imaging applications. Of these, GATE has evolved into one of the most popular software for PET MCS because of its accuracy and flexibility. However, simulations are extremely time-consuming. The use of graphics processing units (GPU) has been proposed as a solution to this, with reported acceleration factors about 400–800. These factors refer to GATE benchmarks performed on a single CPU core. Consequently, CPU-based MCS can also be easily accelerated by one order of magnitude or beyond when exploiting multi-threading on powerful CPUs. Thus, CPU-based implementations become competitive when further optimisations can be achieved. In this context, we have developed a novel, CPU-based software called the PET physics simulator (PPS), which combines several efficient methods to significantly boost the performance. PPS flexibly applies GEANT4 cross-sections as a pre-calculated database, thus obtaining results equivalent to GATE. This is demonstrated for an elaborated PET scanner with 3-layer block detectors. All code optimisations yield an acceleration factor of ≈20 (single core). Multi-threading on a high-end CPU workstation (96 cores) further accelerates the PPS by a factor of 80. This results in a total speed-up factor of ≈1600, which outperforms comparable GPU-based MCS by a factor of ≳2. Optionally, the proposed method of coincidence multiplexing can further enhance the throughput by an additional factor of ≈15. The combination of all optimisations corresponds to an acceleration factor of ≈24 000. In this way, the PPS can simulate complex PET detector systems with an effective throughput of 106 photon pairs in less than 10 milliseconds.

Classification:

Contributing Institute(s):
  1. Physik der Medizinischen Bildgebung (INM-4)
  2. Jara-Institut Quantum Information (INM-11)
  3. Jülich-Aachen Research Alliance - Translational Brain Medicine (JARA-BRAIN)
Research Program(s):
  1. 5253 - Neuroimaging (POF4-525) (POF4-525)

Appears in the scientific report 2021
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Life Sciences ; Ebsco Academic Search ; Essential Science Indicators ; IF < 5 ; JCR ; National-Konsortium ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > INM > INM-11
Institutssammlungen > INM > INM-4
Workflowsammlungen > Öffentliche Einträge
Workflowsammlungen > Publikationsgebühren
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2021-09-08, letzte Änderung am 2022-09-30


OpenAccess:
Volltext herunterladen PDF
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)