Journal Article FZJ-2021-03652

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
A scaling procedure for straightforward computation of sorptivity

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2021
EGU Katlenburg-Lindau

Hydrology and earth system sciences 25(9), 5083 - 5104 () [10.5194/hess-25-5083-2021]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Sorptivity is a parameter of primary importance in the study of unsaturated flow in soils. This hydraulic parameter is required to model water infiltration into vertical soil profiles. Sorptivity can be directly estimated from the soil hydraulic functions (water retention and hydraulic conductivity curves), using the integral formulation of Parlange (1975). However, calculating sorptivity in this manner requires the prior determination of the soil hydraulic diffusivity and its numerical integration between initial and final saturation degrees, which may be difficult in some situations (e.g., coarse soil with diffusivity functions that are quasi-infinite close to saturation). In this paper, we present a procedure to compute sorptivity using a scaling parameter, cp, that corresponds to the sorptivity of a unit soil (i.e., unit values for all parameters and zero residual water content) that is utterly dry at the initial state and saturated at the final state. The cp parameter was computed numerically and analytically for five hydraulic models: delta (i.e., Green and Ampt), Brooks and Corey, van Genuchten–Mualem, van Genuchten–Burdine, and Kosugi. Based on the results, we proposed brand new analytical expressions for some of the models and validated previous formulations for the other models. We also tabulated the output values so that they can easily be used to determine the actual sorptivity value for any case. At the same time, our numerical results showed that the relation between cp and the hydraulic shape parameters strongly depends on the chosen model. These results highlight the need for careful selection of the proper model for the description of the water retention and hydraulic conductivity functions when estimating sorptivity.

Classification:

Contributing Institute(s):
  1. Agrosphäre (IBG-3)
Research Program(s):
  1. 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217) (POF4-217)

Appears in the scientific report 2021
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; Essential Science Indicators ; Fees ; IF >= 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-3
Workflow collections > Public records
Publications database
Open Access

 Record created 2021-09-27, last modified 2022-04-19


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)