Journal Article FZJ-2021-03666

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Simplified characteristic time method for accurate estimation of the soil hydraulic parameters from one‐dimensional infiltration experiments

 ;  ;  ;  ;

2021
Wiley Hoboken, NJ

Vadose zone journal 20(3), 1-13 () [10.1002/vzj2.20117]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Recently, a novel approach with excellent performance based on the concept of the characteristic infiltration time, the characteristic time method (CTM), is proposed to infer soil sorptivity (S) and saturated hydraulic conductivity (Ks) from one-dimensional (1D) cumulative infiltration. The current work provides a simplified version of the CTM, called the SCTM, by eliminating the necessity of the iteration method used in CTM and providing a similar accuracy as the original method when estimating S and Ks. We used both synthetic and experimental data to evaluate SCTM in comparison with the original CTM, as well as Sharma (SH) and curve-fitting methods. In the case of synthetically simulated infiltration experiments, the predicted S and Ks values showed an excellent agreement with their theoretical values, with Nash–Sutcliffe (E) values higher than 0.9 and RMSE values of 0.11 cm h1/2 and 0.35 cm h–1, respectively. In the case of experimental data, the SCTM showed E values larger than 0.73 and RMSE values of 0.64 cm h1/2 and 0.35 cm h–1, respectively. The accuracy and the robustness of SCTM was comparable with the original CTM when applied on synthetic infiltration curves as well as on experimental data. Similar to the original CTM, the simplified approach also does not require the knowledge of the time validity, which is needed when using approaches based on Philip's infiltration theory. The method is applicable to infiltrations with durations from 15 min to 24 h. The supplemental material presents the calculation of S and Ks using SCTM in an Excel spreadsheet.

Classification:

Contributing Institute(s):
  1. Agrosphäre (IBG-3)
Research Program(s):
  1. 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217) (POF4-217)

Appears in the scientific report 2021
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; Clarivate Analytics Master Journal List ; Current Contents - Agriculture, Biology and Environmental Sciences ; DEAL Wiley ; DOAJ Seal ; Essential Science Indicators ; Fees ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-3
Workflow collections > Public records
Publications database
Open Access

 Record created 2021-09-28, last modified 2021-10-18


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)