Journal Article FZJ-2021-03880

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Molecular Flexibility of Antibodies Preserved Even in the Dense Phase after Macroscopic Phase Separation

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2021
American Chemical Society Washington, DC

Molecular pharmaceutics 18(11), 4162–4169 () [10.1021/acs.molpharmaceut.1c00555]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Antibody therapies are typically based on high-concentration formulations that need to be administered subcutaneously. These conditions induce several challenges, inter alia a viscosity suitable for injection, sufficient solution stability, and preservation of molecular function. To obtain systematic insights into the molecular factors, we study the dynamics on the molecular level under strongly varying solution conditions. In particular, we use solutions of antibodies with poly(ethylene glycol), in which simple cooling from room temperature to freezing temperatures induces a transition from a well-dispersed solution into a phase-separated and macroscopically arrested system. Using quasi-elastic neutron scattering during in situ cooling ramps and in prethermalized measurements, we observe a strong decrease in antibody diffusion, while internal flexibility persists to a significant degree, thus ensuring the movement necessary for the preservation of molecular function. These results are relevant for a more dynamic understanding of antibodies in high-concentration formulations, which affects the formation of transient clusters governing the solution viscosity.

Keyword(s): Polymers, Soft Nano Particles and Proteins (1st) ; Chemistry (2nd) ; Soft Condensed Matter (2nd)

Classification:

Contributing Institute(s):
  1. JCNS-4 (JCNS-4)
  2. Neutronenstreuung (JCNS-1)
  3. JCNS-FRM-II (JCNS-FRM-II)
  4. Heinz Maier-Leibnitz Zentrum (MLZ)
Research Program(s):
  1. 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4) (POF4-6G4)
  2. 632 - Materials – Quantum, Complex and Functional Materials (POF4-632) (POF4-632)
Experiment(s):
  1. KWS-2: Small angle scattering diffractometer (NL3ao)
  2. KWS-3: Very small angle scattering diffractometer with focusing mirror (NL3auS)

Appears in the scientific report 2021
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Life Sciences ; Essential Science Indicators ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Institute Collections > JCNS > JCNS-FRM-II
Document types > Articles > Journal Article
Institute Collections > JCNS > JCNS-4
Institute Collections > JCNS > JCNS-1
Workflow collections > Public records
Publications database
Open Access

 Record created 2021-10-14, last modified 2021-11-30


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)