Journal Article FZJ-2021-03912

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
An Enhanced Sampling Approach to the Induced Fit Docking Problem in Protein-Ligand Binding: the case of mono-ADPribosylationhydrolases inhibitors

 ;  ;  ;  ;

2021
Washington, DC

Journal of chemical theory and computation 17(12), 7899–7911 () [10.1021/acs.jctc.1c00649]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Enhanced sampling methods can predict free-energy landscapes associated with protein/ligand binding, characterizing the involved intermolecular interactions in a precise way. However, these in silico approaches can be challenged by induced-fit effects. Here, we present a variant of volume-based metadynamics tailored to tackle this problem in a general and efficient way. The validity of the approach is established by applying it to substrate/enzyme complexes of pharmacological relevance: mono-ADP-ribose (ADPr) in complex with mono-ADP-ribosylation hydrolases (MacroD1 and MacroD2), where induced-fit phenomena are known to be significant. The calculated binding free energies are consistent with experiments, with an absolute error smaller than 0.5 kcal/mol. Our simulations reveal that in all circumstances, the active loops, delimiting the boundaries of the binding site, undergo significant conformation rearrangements upon ligand binding. The calculations further provide, for the first time, the molecular basis of ADPr specificity and the relative changes in its experimental binding affinity on passing from MacroD1 to MacroD2 and all its mutants. Our study paves the way to the quantitative description of induced-fit events in molecular recognition.

Classification:

Contributing Institute(s):
  1. Computational Biomedicine (IAS-5)
  2. Computational Biomedicine (INM-9)
  3. Jülich Supercomputing Center (JSC)
Research Program(s):
  1. 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) (POF4-511)
  2. 5241 - Molecular Information Processing in Cellular Systems (POF4-524) (POF4-524)

Appears in the scientific report 2021
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; Essential Science Indicators ; IF >= 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IAS > IAS-5
Institutssammlungen > INM > INM-9
Workflowsammlungen > Öffentliche Einträge
Workflowsammlungen > Publikationsgebühren
Institutssammlungen > JSC
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2021-10-19, letzte Änderung am 2024-06-25