Journal Article FZJ-2021-04177

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
The Importance of Subsurface Processes in Land Surface Modeling over a Temperate Region: An Analysis with SMAP, Cosmic Ray Neutron Sensing and Triple Collocation Analysis

 ;  ;  ;  ;

2021
MDPI Basel

Remote sensing 13(16), 3068 - () [10.3390/rs13163068]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: Land surface models (LSMs) simulate water and energy cycles at the atmosphere–soil interface, however, the physical processes in the subsurface are typically oversimplified and lateral water movement is neglected. Here, a cross-evaluation of land surface model results (with and without lateral flow processes), the National Aeronautics and Space Administration (NASA) Soil Moisture Active/Passive (SMAP) mission soil moisture product, and cosmic-ray neutron sensor (CRNS) measurements is carried out over a temperate climate region with cropland and forests over western Germany. Besides a traditional land surface model (the Community Land Model (CLM) version 3.5), a coupled land surface-subsurface model (CLM-ParFlow) is applied. Compared to CLM stand-alone simulations, the coupled CLM-ParFlow model considered both vertical and lateral water movement. In addition to standard validation metrics, a triple collocation (TC) analysis has been performed to help understanding the random error variances of different soil moisture datasets. In this study, it is found that the three soil moisture datasets are consistent. The coupled and uncoupled model simulations were evaluated at CRNS sites and the coupled model simulations showed less bias than the CLM-standalone model (−0.02 cm3 cm−3 vs. 0.07 cm3 cm−3), similar random errors, but a slightly smaller correlation with the measurements (0.67 vs. 0.71). The TC-analysis showed that CLM-ParFlow reproduced better soil moisture dynamics than CLM stand alone and with a higher signal-to-noise ratio. This suggests that the representation of subsurface physics is of major importance in land surface modeling and that coupled land surface-subsurface modeling is of high interest

Classification:

Contributing Institute(s):
  1. Agrosphäre (IBG-3)
Research Program(s):
  1. 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217) (POF4-217)

Appears in the scientific report 2021
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; Ebsco Academic Search ; Essential Science Indicators ; Fees ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-3
Workflow collections > Public records
Publications database
Open Access

 Record created 2021-11-09, last modified 2021-11-30


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)