Lecture (Other) FZJ-2021-05271

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
PRACE Training Course: GPU Programming with CUDA

 ;  ;  ;  ;

2021

Lecture at (), 26 Apr 2021 - 30 Apr 20212021-04-262021-04-30

Please use a persistent id in citations:

Abstract: GPU-accelerated computing drives current scientific research. Writing fast numeric algorithms for GPUs offers high application performance by offloading compute-intensive portions of the code to an NVIDIA GPU. The course will cover basic aspects of GPU architectures and programming. Focus is on the usage of the parallel programming language CUDA-C which allows maximum control of NVIDIA GPU hardware. Examples of increasing complexity are used to demonstrate optimization and tuning of scientific applications.Topics covered include: Introduction to GPU/Parallel computing Programming model CUDA GPU libraries like CuBLAS and CuFFT Tools for debugging and profiling Performance optimizationsThis course is a PRACE training course.


Note: Online course within the PRACE and FZJ training program.

Contributing Institute(s):
  1. Jülich Supercomputing Center (JSC)
Research Program(s):
  1. 5121 - Supercomputing & Big Data Facilities (POF4-512) (POF4-512)
  2. 5122 - Future Computing & Big Data Systems (POF4-512) (POF4-512)
  3. 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) (POF4-511)
  4. ATML-X-DEV - ATML Accelerating Devices (ATML-X-DEV) (ATML-X-DEV)

Appears in the scientific report 2021
Database coverage:
OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Präsentationen > Vorlesungen
Workflowsammlungen > Öffentliche Einträge
Institutssammlungen > JSC
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2021-12-15, letzte Änderung am 2025-08-22


OpenAccess:
05-Multi-GPU - Volltext herunterladen PDF
08-Cooperative-Groups - Volltext herunterladen PDF
04-Performance-Opt - Volltext herunterladen PDF
00-Overview - Volltext herunterladen PDF
10-CUB - Volltext herunterladen PDF
09-CUDA-C++ - Volltext herunterladen PDF
06-CUDA-Streams-Events - Volltext herunterladen PDF
02-CUDA-Tools - Volltext herunterladen PDF
07-Matrix-Mul-Tiled - Volltext herunterladen PDF
11-CUDA-Fortran - Volltext herunterladen PDF
01-CUDA-Intro - Volltext herunterladen PDF
03-Matrix-Mul - Volltext herunterladen PDF
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)