Journal Article FZJ-2021-05616

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Cross diagnostics measurements of heat load profiles on the lower tungsten divertor of WEST in L-mode experiments

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2021
Elsevier Amsterdam [u.a.]

Nuclear materials and energy 27, 100961 - () [10.1016/j.nme.2021.100961]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: WEST is a full metallic tokamak with an extensive set of diagnostics for heat load measurements. In this paper, heat loads on the lower divertor of WEST are investigated using two independent methods. A first method relies on the thermal inversion of temperature measurements from arrays of thermal sensors embedded a few millimeters below the surface, while the second consists in the inversion of black body surface temperatures measured by infra-red (IR) thermography. The challenge of IR based temperature measurements in the full metal environment of WEST is addressed through a simplified model, allowing to correct for global reflections and low surface emissivities of tungsten surfaces. A large database ( L-mode discharges) is investigated. It is found that the energy absorbed by an outer divertor tile during a plasma discharge is closely estimated by the two diagnostics, over a large set of experimental conditions. A similar match is also found for the peak heat flux value on the outer target. The toroidal modulation of target heat loads by magnetic ripple is found to be consistent with the geometrical projection of a parallel heat flux component. Additionally, the heat flux channel width at the target is found to scale linearly with the magnetic flux expansion as expected. These observations give confidence in the robustness of the data from both diagnostics, and confirm the simple geometrical rules at use in the description of heat flux deposition on divertor targets. However, it is shown that the heat flux channel width estimated from infra-red thermography is about three times lower than the width estimated from embedded measurements, which is still under investigation.

Classification:

Contributing Institute(s):
  1. Plasmaphysik (IEK-4)
Research Program(s):
  1. 134 - Plasma-Wand-Wechselwirkung (POF4-134) (POF4-134)

Appears in the scientific report 2021
Database coverage:
Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; DOAJ Seal ; Essential Science Indicators ; Fees ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IFN > IFN-1
Workflow collections > Public records
IEK > IEK-4
Publications database
Open Access

 Record created 2021-12-25, last modified 2024-07-11


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)