Journal Article FZJ-2021-05908

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Biocompatible, Flexible, and Oxygen-Permeable Silicone-Hydrogel Material for Stereolithographic Printing of Microfluidic Lab-On-A-Chip and Cell-Culture Devices

 ;  ;  ;  ;  ;  ;  ;  ;

2021
ACS Publications Washington, DC

ACS applied polymer materials 3(1), 243 - 258 () [10.1021/acsapm.0c01071]

This record in other databases:    

Please use a persistent id in citations: doi:

Abstract: We present a photocurable, biocompatible, and flexible silicone-hydrogel hybrid material for stereolithographic (SLA) printing of biomedical devices. The silicone-hydrogel polymer is similar to mixtures used for contact lenses. It is flexible and stretchable with a Young’s modulus of 78 MPa and a maximum elongation at break of 51%, shows a low degree of swelling (<4% v/v) in water, and can be bonded easily to flat glass substrates via a surface-modification method. The in vitro cytotoxicity of the material is assessed with a WST-8 cell viability assay using five different cell lines: HT1080, L929, and Hs27 fibroblasts, cardiomyocyte-like HL-1 cells, and neuronal-phenotype PC-12 cells. On this account, the silicone-hydrogel polymer is compared to several other common SLA printing materials used for cell-culture applications and polydimethylsiloxane (PDMS). A simple extraction step in water is sufficient for reaching biocompatibility of the material with respect to the tested cell types. The oxygen permeability of the silicone-hydrogel material is investigated and compared to that of PDMS, Medicalprint clear—a commercial resin for medical products, and a short-chain hydrogel-based resin. As a proof of concept, we demonstrate a 3D-printed microfluidic device with integrated valves and mixers. Furthermore, we show a printed culture chamber for analyzing signal propagation in HL-1 cardiomyocyte cell networks. Ca2+ imaging is used to observe the signal propagation through the cardiac cell layers grown in the microchannels. The cells are shown to maintain normal electrophysiological activity within the printed chambers. Overall, the biocompatible silicone-hydrogel material will be an advancement for SLA printing in cell-culture and microfluidic lab-on-a-chip applications.

Classification:

Contributing Institute(s):
  1. Bioelektronik (IBI-3)
Research Program(s):
  1. 5244 - Information Processing in Neuronal Networks (POF4-524) (POF4-524)

Appears in the scientific report 2022
Database coverage:
Medline ; Clarivate Analytics Master Journal List ; Emerging Sources Citation Index ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBI > IBI-3
Workflow collections > Public records
Publications database

 Record created 2021-12-27, last modified 2023-01-23


Restricted:
Download fulltext PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)