Journal Article FZJ-2021-06022

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Divergent effects of snow exclusion on microbial variables across aggregate size classes

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2021
Elsevier New York, NY [u.a.]

Catena 206, 105481 - () [10.1016/j.catena.2021.105481]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: Projected changes in winter climate can have large implications for the functioning of terrestrial ecosystems. In particular, increased soil frost associated with reduced insulating snow cover can affect the structure and activity of soil microbial communities in cold ecosystems, but little known about the variability of these effects among the fractions of soil aggregates. We used a snow-exclusion experiment to examine the influence of increased soil frost on microbial biomass and activity in aggregate fractions in a Tibetan alpine spruce forest. We measured the concentrations of phospholipid fatty acids (PLFAs) and the activities of extracellular enzymes involved in carbon and nutrient cycling in soil aggregate fractions (<0.25 mm, 0.25–2 mm and >2 mm) during early thawing years of 2016 and 2017. We found that snow exclusion reduced the concentrations of PLFAs (total, bacterial and fungal) and the activities of enzymes (β-glucosidase, β-N-acetyl-glucosaminidase and acid phosphatase) in three aggregate fractions due to severe abiotic environments, but did not affect the microbial community or enzymatic stoichiometry. Although they varied across the aggregate fractions, soil microbial variables responded to snow exclusion significantly only in the small macroaggregates (0.25–2 mm), which indicated that aggregate size may have a stronger effect than did snow exclusion on microbial variables. Notably, A significant decrease of PLFAs and enzymatic activities in the small macroaggregates under snow exclusion revealed that soil microbes in this fraction were more sensitive to changes in snow cover than in the other aggregate fractions. These findings highlight the ecological importance of microbial processes in aggregates in Tibetan forests experiencing large decreases in snowfall.

Classification:

Contributing Institute(s):
  1. Agrosphäre (IBG-3)
Research Program(s):
  1. 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217) (POF4-217)

Appears in the scientific report 2021
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; Embargoed OpenAccess ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Agriculture, Biology and Environmental Sciences ; Ebsco Academic Search ; Essential Science Indicators ; IF < 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IBG > IBG-3
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2021-12-27, letzte Änderung am 2022-01-31


Published on 2021-05-30. Available in OpenAccess from 2023-05-30.:
Volltext herunterladen PDF
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)