Preprint FZJ-2022-00267

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Towards an Efficient Validation of Dynamical Whole-brain Models

 ;  ;  ;

2021

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: Simulating the resting-state brain dynamics via mathematical whole-brain models requires an optimal selection of parameters, which determine the model’s capability to replicate empirical data. Since the parameter optimization via a grid search (GS) becomes unfeasible for high-dimensional models, we evaluate several alternative approaches to maximize the correspondence between simulated and empirical functional connectivity. A dense GS serves as a benchmark to assess the performance of four optimization schemes: Nelder-Mead Algorithm (NMA), Particle Swarm Optimization (PSO), Covariance Matrix Adaptation Evolution Strategy (CMAES) and Bayesian Optimization (BO). To compare them, we employ an ensemble of coupled phase oscillators built upon individual empirical structural connectivity of 105 healthy subjects. We determine optimal model parameters from two- and three-dimensional parameter spaces and show that the overall fitting quality of the tested methods can compete with the GS. There are, however, marked differences in the required computational resources and stability properties, which we also investigate before proposing CMAES and BO as efficient alternatives to a high-dimensional GS. For the three-dimensional case, these methods generated similar results as the GS, but within less than 6% of the computation time. Our results contribute to an efficient validation of models for personalized simulations of brain dynamics.


Note: Planned for publication in Scientific Reports

Contributing Institute(s):
  1. Gehirn & Verhalten (INM-7)
Research Program(s):
  1. 5232 - Computational Principles (POF4-523) (POF4-523)
  2. HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907) (785907)
  3. HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539) (945539)
  4. VirtualBrainCloud - Personalized Recommendations for Neurodegenerative Disease (826421) (826421)

Appears in the scientific report 2021
Database coverage:
Creative Commons Attribution CC BY 4.0 ; OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Institute Collections > INM > INM-7
Document types > Reports > Preprints
Workflow collections > Public records
Publications database
Open Access

 Record created 2022-01-07, last modified 2022-01-31


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)