Journal Article FZJ-2022-01312

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Understanding the Limitations of Charge Transporting Layers in Mixed Lead–Tin Halide Perovskite Solar Cells

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2022
Wiley-VCH Weinheim

Advanced energy & sustainability research 3(3), 2100156 () [10.1002/aesr.202100156]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Lead–tin (Pb/Sn) mixed perovskites are considered as promising photovoltaic materials owing to their adjustable bandgap and excellent optoelectronic properties. The low-bandgap perovskite solar cells (PSCs) based on lead–tin mixed perovskites play a critical role in the overall performance of perovskite-based tandem devices. Nevertheless, the current record efficiencies for Pb/Sn PSCs are mostly reported in devices with p–i–n configuration rather than n–i–p, which restricts the further development of conventional perovskite-based tandem solar cells. Herein, this work systematically investigates the influence of the interlayers on the performance of low-bandgap PSCs by analyzing the energy losses in both n–i–p and p–i–n devices. Quasi-Fermi level splitting (QFLS) analysis of pristine films and films covering charge extraction layers reveals that the electron transport layer/perovskite interface is dominating the VOC losses. A joint experimental–simulative approach quantitatively determines the interface defect density to be more than one order in magnitude larger for the n–i–p architecture. Among the polymeric hole transport layers investigated for n–i–p devices, poly(3-hexylthiophen-2,5-diyl) (P3HT) exhibits the most favorable energy-level alignment to Pb/Sn perovskites. These results clarify the nature of VOC losses in Pb/Sn perovskites and highlight the necessity to develop electron extraction layers with a significantly reduced interface defect density.

Classification:

Contributing Institute(s):
  1. Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien (IEK-11)
Research Program(s):
  1. 1212 - Materials and Interfaces (POF4-121) (POF4-121)
  2. 1213 - Cell Design and Development (POF4-121) (POF4-121)
  3. 1214 - Modules, stability, performance and specific applications (POF4-121) (POF4-121)

Appears in the scientific report 2022
Database coverage:
Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Clarivate Analytics Master Journal List ; DOAJ Seal ; Emerging Sources Citation Index ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IET > IET-2
Workflow collections > Public records
IEK > IEK-11
Publications database
Open Access

 Record created 2022-02-10, last modified 2024-07-12


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)