Abstract FZJ-2022-01797

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Optimization of a target with microchannel cooling using advanced simulation technologies

 ;  ;  ;  ;  ;  ;  ;  ;  ;

2022

International Symposium UCANS9, UCANS9, online by RIKEN, Japanonline by RIKEN, Japan, online event, 28 Mar 2022 - 31 Mar 20222022-03-282022-03-31

Please use a persistent id in citations:

Abstract: With the decommissioning of research reactors in Europe and elsewhere in recent years, theavailable capacity on neutrons for science is declining and access is becoming crucial for neutronusers. Responding to this development and to offer an alternative way on new neutron sources,the High Brilliance Neutron Source (HBS) project was initiated at the Jülich Centre for NeutronScience (JCNS) at the Forschungszentrum Jülich. It aims at developing a high-current acceleratordrivenneutron source (Hi-CANS) to deliver high-brilliant neutron beams to a variety of neutronscattering instruments. Within the framework of this project, a compact tantalum neutronproductiontarget with a sophisticated internal microchannel cooling was developed for a 70 MeVproton beam with a peak current of 100 mA and an average power of 100 kW for a target areaof 100 cm². The high-power density requires an optimization of the microchannel coolingstructure to reduce temperatures and to minimize thermo-mechanical stresses, whereas thehigh-current requires a design minimizing proton accumulation within the tantalum target toavoid relevant blistering problems. In order to get such an optimal design, the microchannelgeometry was gradually adapted using the particle transport code FLUKA and thermo-mechanicalsimulations with ANSYS. The details of these investigations and the resulting microchannel targetdesign will be presented.


Contributing Institute(s):
  1. Streumethoden (JCNS-2)
  2. Streumethoden (PGI-4)
  3. JARA-FIT (JARA-FIT)
  4. High Brilliance Source (JCNS-HBS)
  5. Zentralinstitut für Technologie (ZEA-1)
Research Program(s):
  1. 632 - Materials – Quantum, Complex and Functional Materials (POF4-632) (POF4-632)
  2. 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4) (POF4-6G4)

Appears in the scientific report 2022
Database coverage:
OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Institute Collections > JCNS > JCNS-HBS
Document types > Presentations > Abstracts
Institute Collections > JCNS > JCNS-2
JARA > JARA > JARA-JARA\-FIT
Institute Collections > ZEA > ZEA-1
Institute Collections > PGI > PGI-4
Workflow collections > Public records
Institute Collections > ITE
Publications database
Open Access

 Record created 2022-03-29, last modified 2025-07-01


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)