Journal Article FZJ-2022-01924

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Detection of Berezinskii-Kosterlitz-Thouless transition via Generative Adversarial Networks

 ;  ;  ;

2022
SciPost Foundation Amsterdam

SciPost physics 12(3), 107 () [10.21468/SciPostPhys.12.3.107]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: The detection of phase transitions in quantum many-body systems with lowest possible prior knowledge of their details is among the most rousing goals of the flourishing application of machine-learning techniques to physical questions. Here, we train a Generative Adversarial Network (GAN) with the Entanglement Spectrum of a system bipartition, as extracted by means of Matrix Product States ans\"atze. We are able to identify gapless-to-gapped phase transitions in different one-dimensional models by looking at the machine inability to reconstruct outsider data with respect to the training set. We foresee that GAN-based methods will become instrumental in anomaly detection schemes applied to the determination of phase-diagrams.

Classification:

Contributing Institute(s):
  1. Quantum Control (PGI-8)
Research Program(s):
  1. 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522) (POF4-522)
  2. PASQuanS - Programmable Atomic Large-Scale Quantum Simulation (817482) (817482)

Appears in the scientific report 2022
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; Essential Science Indicators ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > PGI > PGI-8
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2022-04-14, letzte Änderung am 2023-05-22


OpenAccess:
Volltext herunterladen PDF
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)