Journal Article FZJ-2022-02990

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Examination of Intracellular GPCR-Mediated Signaling with High Temporal Resolution

 ;

2022
Molecular Diversity Preservation International Basel

International journal of molecular sciences 23(15), 8516 - () [10.3390/ijms23158516]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: The GTP-binding protein-coupled receptors (GPCRs) play important roles in physiology and neuronal signaling. More than a thousand genes, excluding the olfactory receptors, have been identified that encode these integral membrane proteins. Their pharmacological and functional properties make them fascinating targets for drug development, since various disease states can be treated and overcome by pharmacologically addressing these receptors and/or their downstream interacting partners. The activation of the GPCRs typically causes transient changes in the intracellular second messenger concentrations as well as in membrane conductance. In contrast to ion channel-mediated electrical signaling which results in spontaneous cellular responses, the GPCR-mediated metabotropic signals operate at a different time scale. Here we have studied the kinetics of two common GPCR-induced signaling pathways: (a) Ca2+ release from intracellular stores and (b) cyclic adenosine monophosphate (cAMP) production. The latter was monitored via the activation of cyclic nucleotide-gated (CNG) ion channels causing Ca2+ influx into the cell. Genetically modified and stably transfected cell lines were established and used in stopped-flow experiments to uncover the individual steps of the reaction cascades. Using two homologous biogenic amine receptors, either coupling to Go/q or Gs proteins, allowed us to determine the time between receptor activation and signal output. With ~350 ms, the release of Ca2+ from intracellular stores was much faster than cAMP-mediated Ca2+ entry through CNG channels (~6 s). The measurements with caged compounds suggest that this difference is due to turnover numbers of the GPCR downstream effectors rather than the different reaction cascades, per se

Classification:

Note: Personal costs (N.G.) and consumables of the study were partly funded by the German Federal Ministry of Education and Research (BMBF) within the project Molecular Interaction Engineering, FKZ 031A095A (awarded to A.B.). Publication costs were funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)

Contributing Institute(s):
  1. Molekular- und Zellphysiologie (IBI-1)
Research Program(s):
  1. 5241 - Molecular Information Processing in Cellular Systems (POF4-524) (POF4-524)

Appears in the scientific report 2022
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; Ebsco Academic Search ; Essential Science Indicators ; Fees ; IF >= 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IBI > IBI-1
Workflowsammlungen > Öffentliche Einträge
Workflowsammlungen > Publikationsgebühren
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2022-08-08, letzte Änderung am 2023-03-07


OpenAccess:
Volltext herunterladen PDF
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)