Journal Article FZJ-2022-03281

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Dissociating passage and duration of time experiences through the intensity of ongoing visual change

 ;  ;  ;

2022
Macmillan Publishers Limited, part of Springer Nature [London]

Scientific reports 12(1), 8226 () [10.1038/s41598-022-12063-1]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: The experience of passage of time is assumed to be a constitutive component of our subjective phenomenal experience and our everyday life that is detached from the estimation of time durations. However, our understanding of the factors contributing to passage of time experience has been mostly restricted to associated emotional and cognitive experiences in temporally extended situations. Here, we tested the influence of low-level visual stimuli on the experience of passage and duration of time in 10–30 s intervals. We introduce a new paradigm in a starfield environment that allows to study the effects of basic visual aspects of a scene (velocity and density of stars in the starfield) and the duration of the situation, both embedded in a color tracking task. Results from two experiments show that velocity and density of stars in the starfield affect passage of time experience independent from duration estimation and the color tracking task: the experienced passage of time is accelerated with higher rates of moment-to-moment changes in the starfield while duration estimations are comparably unaffected. The results strongly suggest differential psychological processes underlying the experience of time passing by and the ability to estimate time durations. Potential mechanisms behind these results and the prospects of experimental approaches towards passage of time experience in psychological and neuroscientific research are discussed.

Classification:

Contributing Institute(s):
  1. Kognitive Neurowissenschaften (INM-3)
Research Program(s):
  1. 5251 - Multilevel Brain Organization and Variability (POF4-525) (POF4-525)

Appears in the scientific report 2022
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; Ebsco Academic Search ; Essential Science Indicators ; Fees ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection ; Zoological Record
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > INM > INM-3
Workflowsammlungen > Öffentliche Einträge
Workflowsammlungen > Publikationsgebühren
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2022-09-08, letzte Änderung am 2023-03-07


OpenAccess:
Volltext herunterladen PDF
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)