Journal Article FZJ-2022-03483

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Resolving ambiguities in core size determination of magnetic nanoparticles from magnetic frequency mixing data

 ;  ;  ;

2022
North-Holland Publ. Co. Amsterdam

Journal of magnetism and magnetic materials 563, 169969 - () [10.1016/j.jmmm.2022.169969]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: Frequency mixing magnetic detection (FMMD) has been widely utilized as a measurement technique in magnetic immunoassays. It can also be used for the characterization and distinction (also known as “colourization”) of different types of magnetic nanoparticles (MNPs) based on their core sizes. In a previous work, it was shown that the large particles contribute most of the FMMD signal. This leads to ambiguities in core size determination from fitting since the contribution of the small-sized particles is almost undetectable among the strong responses from the large ones. In this work, we report on how this ambiguity can be overcome by modelling the signal intensity using the Langevin model in thermodynamic equilibrium including a lognormal core size distribution fL(dc,d0,σ) fitted to experimentally measured FMMD data of immobilized MNPs. For each given median diameter d0, an ambiguous amount of best-fitting pairs of parameters distribution width σ and number of particles Np with R² > 0.99 are extracted. By determining the samples’ total iron mass, mFe, with inductively coupled plasma optical emission spectrometry (ICP-OES), we are then able to identify the one specific best-fitting pair (σ, Np) one uniquely. With this additional externally measured parameter, we resolved the ambiguity in core size distribution and determined the parameters (d0, σ, Np) directly from FMMD measurements, allowing precise MNPs sample characterization.

Classification:

Contributing Institute(s):
  1. Bioelektronik (IBI-3)
Research Program(s):
  1. 5241 - Molecular Information Processing in Cellular Systems (POF4-524) (POF4-524)

Appears in the scientific report 2022
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; Embargoed OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; Essential Science Indicators ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBI > IBI-3
Workflow collections > Public records
Publications database
Open Access

 Record created 2022-09-26, last modified 2023-01-23


Published on 2022-09-22. Available in OpenAccess from 2024-09-22.:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)