Journal Article FZJ-2022-03737

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Detection of Tracer Plumes Using Full‐Waveform Inversion of Time‐Lapse Ground Penetrating Radar Data: A Numerical Study in a High‐Resolution Aquifer Model

 ;  ;  ;  ;  ;  ;

2022
Wiley [New York]

Water resources research 58(5), 23 () [10.1029/2021WR030110]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: Imaging subsurface small-scale features and monitoring transport of tracer plumes at a fine resolution is of interest to characterize transport processes in aquifers. Full-waveform inversion (FWI) of crosshole ground penetrating radar (GPR) measurements enables aquifer characterization at decimeter-scale resolution. The method produces images of both relative dielectric permittivity (εr) and bulk electrical conductivity (σb) that can be related to hydraulic aquifer properties and tracer distributions. To test the potential of time-lapse GPR FWI for imaging tracer plumes, we conducted a numerical tracer experiment by injecting saline water, desalinated water, and ethanol in a heterogeneous aquifer. The saline and desalinated tracers only changed σb, whereas ethanol changed both εr and σb. Tracer concentrations were retrieved from the inverted εr and σb models using information about petrophysical parameters. GPR FWI εr and σb tracer images could recover preferential paths of ∼0.2 m width, while the derived σb structures are smoother. FWI of 50 time-lapse data sets demonstrated the potential of the FWI to derive spatially resolved breakthrough curves of the saline and ethanol tracer in the image plane between the boreholes. Thus, high-resolution imaging with GPR FWI of tracers that produce a high permittivity contrast against the background has a great potential for characterization of heterogeneous transport in aquifers.

Classification:

Contributing Institute(s):
  1. Agrosphäre (IBG-3)
Research Program(s):
  1. 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217) (POF4-217)

Appears in the scientific report 2022
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Agriculture, Biology and Environmental Sciences ; Current Contents - Engineering, Computing and Technology ; DEAL Wiley ; Essential Science Indicators ; IF >= 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IBG > IBG-3
Workflowsammlungen > Öffentliche Einträge
Workflowsammlungen > Publikationsgebühren
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2022-10-20, letzte Änderung am 2023-02-27


OpenAccess:
Volltext herunterladen PDF
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)