Journal Article FZJ-2022-04186

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Optimal pool composition of commercial electric vehicles in V2G fleet operation of various electricity markets

 ;  ;  ;  ;  ;

2022
Elsevier Science Amsterdam [u.a.]

Applied energy 308, 118351 - () [10.1016/j.apenergy.2021.118351]

This record in other databases:    

Please use a persistent id in citations: doi:  doi:

Abstract: The market ramp-up of electromobility is shifting vehicle-to-grid (V2G) issues into the focus of research and industry. Electric vehicles (EVs) have the potential to support the trend towards renewable energies in their role as storage units during idle times. To participate in balancing power and energy markets, EVs are pooled via aggregators. Instead of a random composition, aggregators can smartly compose their pools and add only those vehicles that actually contribute to the pool’s performance, gaining advantages over competitors. The optimization methods presented in this paper form optimized pool combinations based on the power and energy capability profiles of commercial EVs. Genetic algorithms are used to determine the revenues of the possible pools per participating EV. The use cases analyzed are the provision of balancing power on the frequency containment reserve (FCR) market of Central Europe and energy arbitrage trading on the European power exchange intraday continuous and day-ahead auction spot markets. The results show that through smart pool composition, an aggregator can increase revenue per vehicle by up to seven-fold across the markets compared to randomly assembled pools. In the Central European market, for example, the potential V2G revenues on the FCR market (380 €) exceeded those of arbitrage trading (28 € − 203 €) in 2020. In a simulation, we show the increased degradation of the vehicle battery in V2G operation compared to sole use for mobility with a smart charging strategy. However, the additional revenue can make V2G financially worthwhile, depending on costs for measuring equipment, bidirectional charging stations, and aggregator costs.

Classification:

Note: Unterstützt durch BMBF Grants: SimBAS project (Grant No. 03XP0338A) u. open_BEA project (Grant No. 03ET4072)

Contributing Institute(s):
  1. Helmholtz-Institut Münster Ionenleiter für Energiespeicher (IEK-12)
  2. JARA-ENERGY (JARA-ENERGY)
Research Program(s):
  1. 1223 - Batteries in Application (POF4-122) (POF4-122)

Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Ebsco Academic Search ; Essential Science Indicators ; IF >= 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
JARA > JARA > JARA-JARA\-ENERGY
Institute Collections > IMD > IMD-4
Workflow collections > Public records
IEK > IEK-12
Publications database
Open Access

 Record created 2022-11-03, last modified 2024-07-12


OpenAccess:
Download fulltext PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)