Journal Article FZJ-2022-04248

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Estimation of disorders in the rest positions of two membranes in optomechanical systems

 ;  ;

2022
Inst. Woodbury, NY

Physical review / A 105(3), 032423 () [10.1103/PhysRevA.105.032423]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: The formalism of quantum estimation theory is applied to estimate the disorders in the positions of two membranes positioned in a driven optical cavity. We consider the coupled-cavity and transmissive-regime models to obtain effective descriptions of this system for different reflectivity values of the membranes. Our models consist also of high-temperature Brownian motions of the membranes, losses of the cavity fields, the input-output formalism, and a balanced homodyne photodetection of the cavity output field. In this two-parameter estimation scenario, we compare the classical and quantum Fisher information matrices and evaluate the accuracies of the estimations. We show that models offer very different estimation strategies and the temperature does not have a detrimental effect on the estimation accuracies but makes it more difficult to attain the quantum optimal limit. Our analysis, based on recent experimental parameter values, also reveals that the best estimation strategies with unit efficient detectors are measurements of the quadratures of the output field.

Classification:

Contributing Institute(s):
  1. Quantum Control (PGI-8)
Research Program(s):
  1. 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522) (POF4-522)

Appears in the scientific report 2022
Database coverage:
Medline ; American Physical Society Transfer of Copyright Agreement ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Electronics and Telecommunications Collection ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; Essential Science Indicators ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > PGI > PGI-8
Workflow collections > Public records
Publications database
Open Access

 Record created 2022-11-03, last modified 2023-02-28


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)